
Improving Deep Forest by Exploiting
High-order Interactions

Yi-He Chen*, Shen-Huan Lyu*, Yuan Jiang†

National Key Laboratory for Novel Software Technology

Nanjing University, Nanjing 210023, China

{chenyh, lvsh, jiangy}@lamda.nju.edu.cn

Abstract—Recent studies on deep forests have shown that deep
learning frameworks can be built on non-differentiable modules
without a backpropagation training process. However, the feature
representations of deep forests only consist of predicted class
probabilities. The information these class probabilities deliver
is very limited and lacks diversity, especially when the number
of output labels is far less than the number of input features.
Besides, the prediction-based representations require us to save
multiple layers of random forests to use them during testing,
which is high-memory and high-time cost. In this paper, we
propose a novel deep forest model that utilizes high-order interac-
tions of input features to generate more informative and diverse
feature representations. Specifically, we design a generalized
version of Random Intersection Trees (gRIT) to discover stable
high-order interactions and apply Activated Linear Combination
(ALC) to transform them into hierarchical distributed represen-
tations. These interaction-based representations obviate the need
to store random forests in the front layers, thus greatly improving
the computational efficiency. Our experiments show that our
method achieves highly competitive predictive performance with
significantly reduced time and memory cost.

I. INTRODUCTION

In recent years, deep forests (DFs) have achieved state-of-

the-art performance on the categorical and mixed modeling

tasks, e.g., financial application [1], medical application [2],

[3] and geoscience [4], while deep neural networks (DNNs)

dominate the numerical tasks, e.g., computer vision (CV) [5],

automatic speech recognition (ASR) [6] and natural language

processing (NLP) [7]. Although the recent development of

deep neural networks on numerical data is rather attractive,

more real-world problems belong to categorical and mixed

modeling tasks. In such tasks, there are a large number of

attributes from which we can only get qualitative characteris-

tics rather than quantitative characteristics. Therefore, applying

and exploring deep forests and other non-neural network deep

models to a wide range of tasks is an important direction for

the future of deep learning [8].

By summarizing the key ingredients of deep learning may

lie in: layer-by-layer processing, sufficient model complexity,
and in-model feature transformation, Zhou and Feng [9]

proposed gcForest, the first non-NN-style deep models with

these characteristics. Essentially, gcForest is a decision tree

ensemble that employs a cascade structure to do representation

learning. In this cascade structure, each level consists of

*: These two authors contributed equally.
†: Yuan Jiang is the corresponding author.

an ensemble of decision tree forests, i.e. an ensemble of

ensembles. Each level receives feature information processed

by the preceding level and outputs estimated class probabilities

which are then concatenated with the original feature vector as

the input to the next level. Lyu et al. [10] provided a detailed

theoretical analysis that proved deep forests have sufficient

model complexity with enough depth, and the cascaded struc-

ture boosts the feature representations layer by layer instead

of the predictions.

Although gcForest has shown its great potential both em-

pirically and theoretically, we argue that the prediction-based

feature representation of gcForest is a critical deficiency.

Firstly, as stated by original authors [9], the predicted class

probabilities deliver very limited information. A majority of

tasks have much more input features than output labels, which

causes the information in predictions to likely be drowned

out by original features when concatenating them together.

Secondly, since decision tree forests are already pretty stable

predictors, an ensemble of different forests may result in

similar predictions, which causes feature representations to

be redundant and lack diversity. Thirdly, the prediction-based

representations rely on the storing of multi-layered forest

models to do prediction level-by-level during testing, thus

requiring a large amount of memory and time consumption.

Therefore, it is necessary to design more informative feature

representations with less computational cost for deep forests.

In this paper, we propose a novel deep forest model named

high-order interaction Deep Forest (hiDF), which leverages

stable high-order interactions of input features to generate

informative and diverse feature representations. Specifically,

we design a generalized version of Random Intersection Trees

(gRIT) to discover stable high-order interactions and apply Ac-

tivated Linear Combination (ALC) to transform these interac-

tions into new feature representations, which can interact with

input features across multiple layers. In such iterations, hiDF

can effectively mine high-order interactions between input

features and utilize them to improve predictive performance.

Our contributions are twofold. First, the proposed hiDF

method firstly provides hierarchical distributed representations

from low-order to high-order interactions for deep forests,

greatly enhancing the effectiveness and diversity of feature

representations. Second, these representations obviate the need

to store random forests in the front layers, reducing the time

cost and memory requirement by one order of magnitude.

1030

2021 IEEE International Conference on Data Mining (ICDM)

978-1-6654-2398-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDM51629.2021.00118

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

at
a

M
in

in
g

(I
C

D
M

) |
 9

78
-1

-6
65

4-
23

98
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
D

M
51

62
9.

20
21

.0
01

18

Authorized licensed use limited to: Nanjing University. Downloaded on January 28,2022 at 11:02:03 UTC from IEEE Xplore. Restrictions apply.

In
pu

t F
ea

tu
re

s

concatenate

Forest

Forest

Forest

Forest

interactions

St
ab

ili
ty

-a
w

ar
e

In
te

ra
ct

io
n

Ut
ili

za
tio

n

Layer 1

Forest

Forest

Forest

Forest

St
ab

ili
ty

-a
w

ar
e

In
te

ra
ct

io
n

Ut
ili

za
tio

n

bootstrap

Layer 2

···

Layer K

~

Forest

Forest

Forest

Forest

bootstrap

predictions

Fi
na

l P
re

di
ct

io
n

interactions

Fig. 1. The framework of High-order Interaction Deep Forest (hiDF).

II. HIGH-ORDER INTERACTION DEEP FOREST

In this section, we provide a detailed description of our hiDF

algorithm. The framework of hiDF is illustrated in Figure 1.

It employs a multi-layered structure to do representation

learning, each layer consists of an ensemble of decision tree

forests as DF. The most significant difference between DF and

hiDF is that DF uses the prediction of each layer as repre-

sentations while hiDF employs high-order feature interactions

as representations. hiDF utilizes both feature interactions and

multi-layered structure to construct multiple levels of feature

representations and learn a hierarchy of explanatory factors

internally. This deep structure promotes the re-use of features

[11] and the ultimate goal is to form hierarchical distributed

representations of data, which is useful to our learning task.

Specifically, hiDF utilizes feature interactions mainly in

three steps. First, given an ensemble of random forests fitted

on the input features, numerous decision rules are extracted

from these decision trees. These decision rules are then

processed by generalized Random Intersection Trees (gRIT)

to identify prevalent feature interactions. Second, an outer

bagging procedure performs the previous step on bootstrap

samples. This extra perturbation of the data allows us to do

“interaction selection” by assessing the stability associated

with the identified interactions. Only those feature interactions

with high stability scores are utilized through Activated Linear

Combinations (ALC) to generate new feature representations.

Finally, a metric-aware mechanism is applied to grow layers

adaptively to reduce the risk of overfitting. We will discuss

these three steps in more detail in the following subsections.

A. Extract feature interactions through gRIT and ERF

We identify feature interaction as a collection of conditions

inside a decision rule, a decision rule is of the simple form:

IF: condition1 & . . .& conditioni, THEN: response. (1)

Accordingly, a feature interaction can be described as

condition1& . . .&conditioni, which is the premise of a de-

cision rule. The conditions are based on input variables. For

a continuous variable xi, it could take the form: xi ≥ ti,
where ti is a determined threshold. For categorical variables,

we transform them using one-hot encoding so we can get

similar forms. In this work, we only consider the premise of a

decision rule regardless of the response. To represent decision

rules succinctly, we use signed feature index ±i with threshold

ti for describing a condition, in which a positive index means

xi ≥ ti and a negative index means xi < ti. Following

this notation, a decision rule R of i conditions is represented

by I(R) = {Iindex, Ithreshold} = {(x1, . . . , xi), (t1, . . . , ti)},
where I

index is a vector of i signed feature indices and

I
threshold represents associated thresholds.

Since decision rules can be encoded by the decision paths

from root nodes to leaf nodes, we use enriched random forests

(ERFs) [12] to extract decision rules from data. ERFs can

be seen as RFs with a soft dimension reduction process, i.e.

selecting more informative features in the input space.

Given numerous decision rules detected from ERFs, one

can naturally treat them as feature interactions. However,

they come with two drawbacks. First, each decision rule

corresponds to only a small number of instances, which

lacks statistical importance. Second, the decision rules are

long and intricate, therefore do not generalize very well. To

address these two drawbacks, we apply gRIT to process the

detected decision rules. The main idea of gRIT is to “prune”

those decision rules with respect to statistical meaning. After

gRIT, statistically important feature interactions with better

generalization ability can be discovered.

gRIT is summarized in Algorithm 1. A gRIT contains L
intersection trees. Inside each intersection tree � ∈ {1, . . . , L},
J example indices {i1, . . . , iJ} are uniformly sampled from

data and their corresponding decision rules are represented as

{Ii1 . . . IiJ} using the signed feature index notation mentioned

earlier. Then, it performs J-fold intersections Ii1 ∩ · · · ∩ IiJ

to keep informative features and prune away noisy features.

The main intuition behind this is that if a feature xi of

an interaction I is sufficiently prevalent, it will survive the

intersection with high probability. The original RIT algorithm

[13] is restricted to only binary categorical features, so it

has a limited application range. Here, our generalized version

can deal with both categorical and continuous features with

threshold information.

1031

Authorized licensed use limited to: Nanjing University. Downloaded on January 28,2022 at 11:02:03 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: generalized Random Intersection Trees

Require: Rule set R =
{
Ii; Ii = {Iindexi , Ithresholdi }

}n

i=1
Ensure: T = ∪L�=1T�

1: for tree � in {1, 2, . . . , L} do
2: Let � be a tree of depth D. Let J be the total number of nodes in the tree, and index the nodes such that every

parent-child pair, larger indices are assigned to the child than the parent. For each node j = 1, . . . , J , denote the

parent of node j as pa(j), let ij be a uniform sample index from the training data and corresponds to node j.

3: Set T index
1 ← I

index
i1

, T threshold
1 ← I

threshold
i1

4: for j in {2, . . . , J} do
5: T index

j ← I
index
ij

∩ Tpa(j) , T threshold
j ← ∅

6: for feature index i in T index
j do

7: T threshold
j ← T threshold

j +
{

max(ti, t
′
i) if i < 0, else min(ti, t

′
i). ti ∈ I

threshold
ij

, t′i ∈ T threshold
pa(j)

}

8: end for
9: end for

10: T index
� ←

{
T index
j : depth(j) = D

}
, T threshold

� ←
{
T threshold
j : depth(j) = D

}
11: T� ← {T index

� , T threshold
� }

12: end for

B. Stability-aware interaction utilization

Statistical results should at least be reproducible relative

to “reasonable” data and model perturbations [14]. Towards

this goal, we assess the stability associated with the iden-

tified feature interactions using an extra outer bagging step.

Specifically, we generate B bootstrap sample data D(b), b =
{1, . . . , B}, fit B enriched random forests ERF on each sample

D(b). Then, we apply gRIT to discover B sets of feature

interactions T(b) from these samples. We use the stability

score defined as (2). It reflects the prevalence an interaction

I ∈ ∪Bb=1T(b) appears out of B bootstrap samples.

stability(I) =
1

B

B∑
b=1

�{I ∈ T(b)}. (2)

Given the discovered feature interactions and their stability

scores, we want to retain those interactions with top k scores

or with scores bigger than a pre-specified threshold. They

represent the most stable feature interactions, therefore lead to

better generalization performance. This “interaction selection”

procedure retains only a small number of stable interactions

and discards a large number of unstable ones, which will ease

the memory cost burden significantly.

To utilize the discovered feature interactions, we generate

one new feature for each interaction, using Activated Linear

Combination (ALC) including weighted sum and nonlinear

activation functions, and denote these new features by rnew.

Take the feature interaction I = {Iindex, Ithreshold} =
{(−2, 3), (t2, t3)} as an example, along with each feature’s

gini importance w = (w2, w3). rnew(w, I) is calculated as:

rnew(w, I) = σ(−w2(x2 − t2) + w3(x3 − t3)), (3)

where σ(x) = x · 1[x ≥ 0] is a non-linear activation function.

We concatenate the new features with the current input features

to form the input feature in the next layer. We will discuss the

multi-layered structure in the next subsection.

C. Adaptive layer growth

It is widely acknowledged that depth plays a crucial role in

the success of deep learning. We believe that deep structures

bring two crucial benefits compared to shallow structures.

First, deep structures promote the re-use of features, with the

ultimate goal is to form hierarchical distributed representations

of data, which are beneficial to better generalization perfor-

mance. Second, shallow layers tend to discover low-order

feature interactions while deeper layers tend to discover high-

order interactions, high-order interactions reflect on greater

importance, thus have more impact on the learning task.

To get these two benefits, hiDF employs a multi-layered

structure. Specifically, each layer is an ensemble of random

forests, based on which we apply ERFs and gRIT to discover

a rich family of feature interactions. Then we generate a new

feature vector via the stability-aware interaction utilization

mechanism described in the previous subsection. The newly

generated feature vector is then concatenated with the input

feature vector to form the new feature representations, which

serve as the input to the next layer.

After expanding each new layer, hiDF estimates the per-

formance of the current whole structure using a separate

validation set. If there is no obvious performance boost, hiDF

will terminate the training process. This adaptive layer-wise

growing strategy can reduce the risk of overfitting, it also

facilitates the model complexity of hiDF to be determined

automatically. The overall framework of hiDF is illustrated

in Figure 1 and summarized in Algorithm 2.

It is worth mentioning that the meaning of high-order

in our hiDF is twofold: (1) hiDF can discover high-order

interactions from the original features by gRIT, and (2) through

our multi-layered approach, hiDF can detect the interactions

between original features and the newly generated features,

even among only newly generated features, causing the order

of interactions to increase layer by layer.

1032

Authorized licensed use limited to: Nanjing University. Downloaded on January 28,2022 at 11:02:03 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: High-order Interaction Deep Forest

Require: Training set S, the maximum number of layers

K and number of bootstrap samples B.

Ensure: K-layer deep forest model
{
RF, {S(k)

r }Kk=1

}
.

1: Initialize representation features r(1) ← ∅,
layer 0 data S

(0)
r = S, validation error l0 = 1.

2: for k in {1, . . . ,K} do
3: S

(k)
r ← concatenate(S

(k−1)
r , r(k))

4: Fit RF on S
(k)
r

5: w(k) ← Gini importance of RF
6: for b in {1, 2, . . . , B} do
7: Generate bootstrap samples S(b) from S

(k)
r

8: Fit an Enriched-RF (w(k)) on S(b)

9: R(b) ← { Iit : xi ∈ S(b),

falls in leaf node it of tree t }

10: T (k+1)
(b) ← gRIT(R(b))

11: end for
12: Initialize r(k+1) ← ∅.
13: for I

(k+1) ∈ ∪Bb=1T
(k+1)
(b) do

14: stability(I(k+1))← 1
B

∑B
b=1 {I(k+1) ∈ T (k+1)

(b) }
15: if stability(I(k+1)) > 0.5 then
16: r(k+1) ← r(k+1) ∪ rnew

(
w(k), I(k+1)

)
17: end if
18: end for
19: Compute the cross validation error lk on r(k+1).

20: if lk > lk−1 then
21: Terminate training and return current model.

22: end if
23: end for
24: Fit RF on S

(K+1)
r

III. EXPERIMENTS

In this section, we conduct several experiments with hiDF

on both synthetic data and several widely used benchmark

datasets. We first demonstrate that hiDF can obtain infor-

mative feature representations using a hierarchical processing

structure. We then evaluate the effectiveness of hiDF across

several real datasets. The results show that hiDF can achieve

the highest classification accuracy on all of these benchmark

datasets and it exhibits better performance than deep forest

consistently. Meanwhile, hiDF uses significantly less memory

space and test time and has a moderate amount of training

time compared to deep forest.

A. Synthetic data

First, we use a synthetic dataset to demonstrate that hiDF

can learn informative feature representations through its multi-

layered feature interaction utilization mechanism. Our syn-

thetic dataset is a binary classification task generated by

Gaussian data on R
2 with a spherical decision boundary

as illustrated in Figure 2(a). It contains 10,000 examples

(80% for training and 20% for testing). We also introduce

(a) Input features. (b) The t-SNE visualization of features in differ-
ent layers.

Fig. 2. The quality of feature representations generated by hiDF across
different layers on the synthetic data.

additional 500 uniform random noise features in the dataset.

These uninformative random features make the classification

task more complex, thus allowing us to assess the quality of

representation features generated by hiDF.

The output feature representations from layer 6 and layer

12 of hiDF are illustrated via t-SNE in Figure 2(b). Clearly,

hiDF can get informative feature representations from the

original input space, and as layers go deeper, data points

become linearly separable while preserving some structure

information inside one class. This demonstrates that hiDF

is equipped with similar representation learning abilities as

deep neural networks, which uses hidden layers to distort

the input in a non-linear way so that classes become easily

separable by the last layer [15]. We believe that leveraging

feature interactions on multiple levels facilitates hiDF to learn

hierarchical distributed representations of data.

We also examine the importance of new features generated

across varying feature interaction orders via the marginal im-

portance metric [16]. Figure 3 depicts the result by a boxplot.

We can see that the leftmost bar shows the input features’

marginal importance, with all but two informative features

having nearly zero importance values. Figure 3 also illustrates

that new features generated from higher-order interactions tend

to have greater feature importance, thus have more impact on

the learning task. Since higher-order feature interactions are

usually discovered in deeper layers, it is reasonable to believe

that hiDF can benefit from its hierarchical structure.

Fig. 3. The importance of features with varying interaction orders

1033

Authorized licensed use limited to: Nanjing University. Downloaded on January 28,2022 at 11:02:03 UTC from IEEE Xplore. Restrictions apply.

TABLE I
STATISTICS OF THE DATASETS IN TERMS OF NUMBER OF EXAMPLES,

NUMBER OF FEATURES AND NUMBER OF CLASSES

Datasets # of examples # of features # of classes

CoverType 581,012 54 7
Adult 48,842 14 2
Bank 41,188 20 2
Credit Card 30,000 23 2
Arrhythmia 452 279 16
YearPredictionMSD 50,000 90 2
Diabetes Readmission 100,000 55 2
Satimage 6,435 36 6
Crowdsourced Mapping 10,845 28 6
Congestive Heart Failure 9809 88 2

B. Real dataset

We select several widely used benchmark datasets of binary

and multi-class classification tasks from the UCI Machine

Learning Repository [17]. The datasets vary in size: from only

452 examples up to 581,012 examples. They come from differ-

ent areas, including health and medical research (Arrhythmia

and Diabetes Readmission), remote sensing (CoverType and

Satimage), financial and business (Bank marketing and Default

of Credit card clients), social study (Adult), etc. We select

these datasets mainly for two reasons. First, they are represen-

tative tabular data of categorical and mixed variable types and

tend to contain multiple underlying explanatory factors that

can be utilized by our hiDF to discover feature interactions.

Second, these datasets have more input features than output

labels, which could verify that our hiDF can generate more

informative and diverse feature representations than gcForest.

In addition to these 9 UCI datasets, we release a new dataset

called Congestive Heart Failure Dataset. This dataset includes

9809 patients with a diagnosis of “Congestive Heart Failure”

from the MIMIC-III (Medical Information Mart for Intensive

Care) platform [18]. MIMIC is a relational and public database

containing tables of data relating to patients who stayed within

the intensive care units at Beth Israel Deaconess Medical

Center. In this Congestive Heart Failure Dataset, 88 numerical

and categorical variables including patients’ demographics, vi-

tals’ measurements, laboratory results, prescriptions, imaging

results, etc are collected to predict the in-hospital mortality of

patients. Table I shows the basic statistics of these datasets.

In these experiments, we used the default hyper-parameters

defined in our hiDF model and did not fine-tune them. The

default number of decision trees in a random forest is 500; the

number of maximum layers in hiDF is 10; the early stopping

patience is 2; the number of bootstrap samples B = 10 ;

the default number of intersection trees is 20 with each tree’s

depth D = 5 and nchild = 2. For reproducibility, we make

the source code and some datasets used in this work publicly

available at https://git.io/DM487

C. Performance comparison

We adopt classification accuracy as our evaluation measure.

For comparison, we choose several widely used tree ensem-

ble algorithms including GBDT [19], Random Forests [20],

gcForest [9], gcForestCS [21], XGBoost [22], and SVM.

The gcForest method is proposed by Zhou and Feng [9]

to show that deep learning framework also can be realized

by non-differentiable modules. It achieves state-of-the-art per-

formance on many categorical and mixed modeling tasks.

Recently, Pang et al. [21] proposed gcForestCS to address the

high computational cost problem of gcForest by introducing a

confidence screening mechanism. We set the hyper-parameters

of gcForest and gcForestCS as default.

XGBoost is a scalable end-to-end tree boosting system

proposed by Chen and Guestrin [22]. We set the number of

boosting rounds equals to 500, and the maximum tree depth for

base learners equals to 6. As for other hyper-parameters, we set

them as the default values. We apply the same configurations

of hyper-parameters to GBDT.

Table II reports the accuracy comparison result among

these methods. The win/tie/lose counts of hiDF over the other

methods are indicated by the last rows. We can see that hiDF

achieves the highest accuracy on all of these datasets. We

can also clearly see that hiDF exhibits consistently better

performance than gcForest and gcForestCS, which suggests

hiDF’s representation learning ability based on high-order

feature interactions can indeed boost the performance of the

original deep forest.

TABLE II
COMPARISON OF TEST ACCURACY OF EACH METHODS ON THESE 10 DATASETS.

THE BEST ACCURACY IS HIGHLIGHTED IN BOLD TYPE. • INDICATES THE SECOND-BEST.

Datasets hiDF gcForest gcForestCS Random Forests XGBoost GBDT SVM

CoverType 97.62 ± 0.08 96.23 ± 0.10 96.09 ± 0.07 95.63 ± 0.07 94.48 ± 0.05 96.94 ± 0.11 • 71.47 ± 0.12
Adult 86.90 ± 0.05 86.17 ± 0.06 86.17 ± 0.09 85.15 ± 0.08 86.40 ± 0.00 • 86.12 ± 0.10 79.86 ± 0.00
Bank 89.96 ± 0.21 89.89 ± 0.26 89.95 ± 0.25 • 89.33 ± 0.17 89.13 ± 0.33 88.60 ± 0.25 89.75 ± 0.21
Credit Card 82.00 ± 0.23 81.74 ± 0.38 • 81.73 ± 0.20 81.71 ± 0.33 80.61 ± 0.36 81.24 ± 0.27 77.88 ± 0.01
Arrhythmia 78.24 ± 1.62 76.26 ± 1.49 • 74.51 ± 1.62 74.51 ± 2.13 75.16 ± 1.32 74.29 ± 3.15 60.66 ± 1.62
YearPredictionMSD 75.89 ± 0.46 75.49 ± 0.40 75.61 ± 0.30 73.41 ± 0.30 74.69 ± 0.21 75.85 ± 0.20 • 68.62 ± 0.62
Diabetes 62.43 ± 0.23 62.26 ± 0.36 62.37 ± 0.33 • 62.11 ± 0.24 61.00 ± 0.17 61.04 ± 0.45 54.99 ± 0.02
Satimage 91.75 ± 0.06 91.63 ± 0.12 • 91.58 ± 0.11 91.21 ± 0.05 90.65 ± 0.00 90.44 ± 0.09 88.60 ± 0.00
Crowdsourced Mapping 65.07 ± 0.88 64.93 ± 0.95 65.03 ± 0.56 • 63.47 ± 0.72 62.00 ± 0.00 62.53 ± 0.50 55.67 ± 0.00
Congestive Heart Failure 90.16 ± 0.53 88.61 ± 0.59 88.58 ± 0.27 87.90 ± 0.01 89.34 ± 0.01 • 88.83 ± 0.01 85.09 ± 0.00

win/tie/lose — 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0

1034

Authorized licensed use limited to: Nanjing University. Downloaded on January 28,2022 at 11:02:03 UTC from IEEE Xplore. Restrictions apply.

D. Computational complexity comparison with gcForest

To show that hiDF can achieve state-of-the-art predictive

result while still being computationally efficient, we compare

hiDF with gcForest and gcForestCS on two datasets: Adult

and CoverType. We use a hardware of 16× 3.70 GHz CPUs

with 128 GB memory. All of these methods grow 20 layers.

Table III summarizes the results. We can see that hiDF uses

significantly less memory and test time than gcForest and

gcForestCS (by about one order of magnitude).

TABLE III
COMPARISON RESULTS OF TRAINING TIME, TEST TIME(IN CPU SECONDS)

AND MEMORY USAGE (IN MEGABYTES) WITH TWO DATASETS.

Datasets Method Training time Test time Memory

Adult
hiDF 3208.7 13.1 2793.2
gcForest 2763.8 541.3 29243.9
gcForestCS 1063.1 290.2 23272.7

Covertype
hiDF 4505.9 90.9 5562.5
gcForest 2861.3 1519.4 61981.2
gcForestCS 1582.3 730.1 57658.8

The main reason behind the efficiency of hiDF is: since the

feature representations generated by gcForest and gcForestCS

are based on RF predictions. As a result, they have to save the

trained multilayer RFs to generate feature representations for

test instances, which is essentially saving tens of thousands of

unpruned decision rules, thus requiring a large memory cost.

Besides, gcForest and gcForestCS consumes a lot of time to

do layer-wise prediction for test instances. On the other hand,

hiDF does not rely on prediction-based representations. There-

fore, only a small number (tens) of feature interactions have to

be saved in each layer, and test instances can generate feature

representations easily based solely on these interactions.

Note that in our current implementation, the B times

bootstrap are done sequentially, so the gRIT processing takes

the majority amount of time. The training time of our hiDF

could be significantly less if using parallel processing.

IV. CONCLUSION

In this paper, we focus on the problem of limited repre-

sentation learning ability and large computational complexity

caused by prediction-based representations in traditional Deep

Forest algorithms. To address these shortcomings, we propose

a novel method called hiDF to attain interaction-based hier-

archical distributed representations through in-model feature

transformation. Experiments show the potential of hierarchical

distributed representations for reducing the complexity of

classification tasks by enhancing the separability of data,

and further demonstrate the performance improvement and

computational effectiveness of our method.

ACKNOWLEDGMENT

This work is supported by the National Key Research and

Development Program of China No.2020AAA0109400.

The authors would like to thank Doctor Yao Wang from Sir

Run-Run Shaw Hospital, Zhejiang University for generously

providing the Congestive Heart Failure Dataset, as well as the

anonymous reviewers and Yi-Xiao He from Nanjing Univer-

sity and Kewen Zheng from National University of Singapore

for constructive suggestions.

REFERENCES

[1] Y.-L. Zhang, J. Zhou, W. Zheng, J. Feng, L. Li, Z. Liu, M. Li, Z. Zhang,
C. Chen, X. Li et al., “Distributed deep forest and its application to
automatic detection of cash-out fraud,” ACM Transactions on Intelligent
Systems and Technology, vol. 10, no. 5, pp. 1–19, 2019.

[2] L. Sun, Z. Mo, F. Yan, L. Xia, F. Shan, Z. Ding, W. Shao, F. Shi,
H. Yuan, H. Jiang, D. Wu, Y. Wei, Y. Gao, W. Gao, H. Sui, D. Zhang,
and D. Shen, “Adaptive feature selection guided deep forest for COVID-
19 classification with chest CT,” IEEE Journal of Biomedical and Health
Informatics, vol. 24, no. 10, pp. 2798–2805, 2020.

[3] Y. Guo, S. Liu, Z. Li, and X. Shang, “BCDForest: A boosting cascade
deep forest model towards the classification of cancer subtypes based
on gene expression data,” BMC Bioinformatics, vol. 19, no. 5, p. 118,
2018.

[4] F. Yang, Q. Xu, B. Li, and Y. Ji, “Ship detection from thermal remote
sensing imagery through region-based deep forest,” IEEE Geoscience
and Remote Sensing Letters, vol. 15, no. 3, pp. 449–453, 2018.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[6] S. Kriman, S. Beliaev, B. Ginsburg, J. Huang, O. Kuchaiev,
V. Lavrukhin, R. Leary, J. Li, and Y. Zhang, “Quartznet: Deep automatic
speech recognition with 1D time-channel separable convolutions,” in
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, 2020, pp. 6124–6128.

[7] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018.

[8] Y. Bengio, “Learning deep architectures for AI,” Foundations and
Trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[9] Z.-H. Zhou and J. Feng, “Deep forest,” National Science Review, vol. 6,
no. 1, pp. 74–86, 2019.

[10] S.-H. Lyu, L. Yang, and Z.-H. Zhou, “A refined margin distribution
analysis for forest representation learning,” in Advances in Neural
Information Processing Systems 32, 2019, pp. 5530–5540.

[11] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[12] D. Amaratunga, J. Cabrera, and Y.-S. Lee, “Enriched random forests,”
Bioinformatics, vol. 24, no. 18, pp. 2010–2014, 2008.

[13] R. D. Shah and N. Meinshausen, “Random intersection trees,” Journal
of Machine Learning Research, vol. 15, no. 20, pp. 629–654, 2014.

[14] B. Yu, “Stability,” Bernoulli, vol. 19, no. 4, pp. 1484–1500, 2013.
[15] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,

no. 7553, pp. 436–444, 2015.
[16] S. Basu, K. Kumbier, J. B. Brown, and B. Yu, “Iterative random forests

to discover predictive and stable high-order interactions,” Proceedings
of the National Academy of Sciences, vol. 115, no. 8, pp. 1943–1948,
2018.

[17] Dua, D. and Graff, C. (2019). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science.

[18] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-Wei, M. Feng, M. Ghas-
semi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “Mimic-iii,
a freely accessible critical care database,” Scientific data, vol. 3, no. 1,
pp. 1–9, 2016.

[19] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[20] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[21] M. Pang, K.-M. Ting, P. Zhao, and Z.-H. Zhou, “Improving deep forest
by confidence screening,” IEEE Transactions on Knowledge and Data
Engineering, 2020.

[22] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

1035

Authorized licensed use limited to: Nanjing University. Downloaded on January 28,2022 at 11:02:03 UTC from IEEE Xplore. Restrictions apply.

