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Abstract

In this paper, we formulate the forest representation learning approach named
casForest as an additive model, and show that the generalization error can be
bounded by O(lnm/m), when the margin ratio related to the margin standard
deviation against the margin mean is sufficiently small. This inspires us to optimize
the ratio. To this end, we design a margin distribution reweighting approach for the
deep forest model to attain a small margin ratio. Experiments confirm the relation
between the margin distribution and generalization performance. We remark that
this study offers a novel understanding of casForest from the perspective of the
margin theory and further guides the layer-by-layer forest representation learning.

1 Introduction

In recent years, deep neural networks have achieved excellent performance in many application
scenarios such as face recognition and automatic speech recognition [19]. It is well known that
deep neural networks are difficult to be interpreted. This severely restricts the development of deep
learning in application scenarios where the interpretability of the model is crucial. Moreover, deep
neural networks are data-hungry and the performance will degrades significantly when the size of the
training data is not big enough [12, 20]. In real-world tasks, due to the high cost of data collection
and labeling, the amount of labeled training data may be insufficient for deep neural networks.

In such a situation, conventional learning methods such as support-vector machines (SVMs) [7],
random forests (RFs) [3], gradient boosting decision trees (GBDTs) [15, 5], etc., are still good choices.
By realizing that the essence of deep learning lies in the layer-by-layer processing, in-model feature
transformation, and sufficient model complexity, recently Zhou & Feng [32, 33] propose the deep
forest model and the gcForest algorithm that incorporate forest representation learning. It can achieve
excellent performance on a broad range of tasks, and even perform well on small or middle-scale
data. Later on, a more efficient improvement is made by Pang et al. [21]. Feng & Zhou [13] show
that forests are able to do auto-encoder which was considered as a specialty of neural networks.
The tree-based multi-layer model can do hierarchical distributed representation learning which was
thought to be a special feature of neural networks [14]. Utkin & Ryabinin [25] propose a Siamese
deep forest as an alternative to the Siamese neural network for metric learning tasks.

The cascade forest (abbr. casForest) structure plays an important role in Deep Forest, and it is crucial
for the layer-by-layer processing. This paper attempts to explain the benefits of casForest from the
perspective of the margin theory.
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1.1 Our Results

In Section 2, we formulate casForest (see the structure in Figure 1) as an additive model (the additive
casForest model) to optimize the margin distribution:

F (x) =

T∑
t=1

αtht (x) , (1)

where αt is a scalar determined by the margin distribution loss function `md. The input of each random
forests block function φt is the raw feature x and the (t−1)-th augmented feature ft−1 =

∑t−1
l=1 αlhl:

ht(x) = φt ([x, ft−1(x)]) = φt

([
x,

t−1∑
l=1

αlhl(x)

])
, (2)

so that the t-layer casForest model ht ∈ Ht is defined by such a recursive formula. Unlike all the
weak classifiers of traditional boosting are chosen from the same hypothesis set H, the hypothesis
set of the t-layer casForest model contains the (t− 1)-layer1, i.e.,Ht−1 ⊂ Ht,∀t ≥ 2.

In Section 3, we provide a margin distribution upper bound for the generalization error of the additive
model above:

Pr
D

[yF (x) < 0]− Pr
S

[yF (x) < r] ≤
ln
∑T
t=1 αt |Ht|
r2

· lnm

m
+ λ

√
ln
∑T
t=1 αt |Ht|
r2

· lnm

m
, (3)

where m is the size of training set, r is a margin parameter, λ =
√

Var[yF (x)]
E2
S [yF (x)]

is a ratio related to the
margin standard deviation against the margin mean, and yF (x) denotes the margin of the sample x.

Inspired by our theoretical result, we propose an effective algorithm named margin distribution Deep
Forest (see mdDF in Algorithm 2) to encourage optimizing the margin ratio. Extensive experiments
validate that mdDF can effectively improve the performance on classification tasks, especially for
categorical and mixed modeling tasks.

1.2 Related Work

Deep Forest. Deep Forest [32, 33] is a non-neural network deep learning model which builds
upon decision trees and does not rely on BP algorithm and gradient-based approach. The earliest
deep forest algorithm gcForest [33], is constructed by the multi-grained scanning operation and
the casForest structure. The multi-grained scanning operation aims to deal with the raw data with
spatial or sequential relations. The casForest structure aims at the layer-by-layer processing with
in-model feature transformation. It can be viewed as an ensemble approach that utilizes almost all
categories of well-known strategies for diversity enhancement, e.g., input feature manipulation and
output representation manipulation [30].

Margin theory. The margin theory was used by Schapire et al. [24] to explain the resistance of
AdaBoost to overfitting, but then attacked almost to death by the construction of the Arc algorithm by
Breiman [2]. Later on, it was found that the empirical attack to margin theory of Adaboost might
be misleading [22], and many theoretical studies tried to get more understanding, ended by Gao &
Zhou [16]. They finally proved that the margin distribution, which can be improved by increasing the
margin mean while decreasing the margin variance, is crucial to the performance of AdaBoost. This
has inspired the birth of a series of new statistical learning algorithms named ODM [31, 28, 29].

2 Cascade Forest

In Figure 1, the casForest structure is composed of stacked entities named random forests blocks
φts. Each random forests block consists of several forest modules, e.g., commonly random forests

1The hypothesis of the random forests block in the t-th layer contains that in the (t− 1)-th layer without
updating the augmented features, i.e., αt = 0. In other words, the in-model transformation [33] is crucial for the
recursive formulation.
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Figure 1: The standard cascade structure of the deep forest model [33] can be viewed as a layer-
by-layer process. This feature augmentation can achieve feature enrichment by concatenating the
prediction vector with the input feature vector, which is named "PRECONC".

(abbr. RF) [3] and completely-random forests (abbr. CRF) [32]. Suppose f1 denotes the function of
the first-layer forests, then given the input x to the first layer, the input to the second layer will be
[x, f1(x)], where [a, b] denotes the concatenation of a and b to form a feature vector. Considering
that the f1(x) is the prediction from the first layer, we name this process as “PRECONC” (PREdiction
CONCatenation), which is crucial for the feature learning process in deep forest. PRECONC is different
from the stacking operation [27, 1] in traditional ensemble learning, where the second-level learners
act on the prediction space composed of different base learners, whereas the information of the
original input feature space is ignored. Using the stacking operation with more than two layers would
seriously suffer from overfitting, and cannot enable a deep model. In this paper we do not study the
factors which enable deep forest to become a deep model, only focus on the cascade structure.

Firstly we formulate casForest as an additive model in this section. We consider training and test
samples generated i.i.d. from distribution D over X × Y , where X ∈ Rn is the input space and
Y ∈ {1, 2, . . . , s} is the output space. We denote a training set of m samples drawn from Dm by S.

The casForest model can be formalized as follows. We use a quadruple form (φ,f ,D,h) where

• Forest block: φ = (φ1, φ2, . . . , φT ), where φt denotes the function computed by the
random forests block in the t-th layer which is defined by (4);

• casForest: h = (h1, h2, . . . , hT ), where ht denotes the t-layer casForest model defined by
(5), and ht drawn from the hypothesis setHt;
• Augmented feature: f = (f1, f2, . . . , fT ), where ft denotes the output in the t-th layer,

which is defined by (6);
• Sample distribution: D = (D1,D2, . . . ,DT ), whereDt is the updated sample distribution

in the t-th layer, and D1 = D.

φt is the function returned by the random forests block (Algorithm 1). The input of the algorithm
is the raw training sample S = {(x1, y1), . . . , (xm, ym)}, the augmented feature from the previous
layer ft−1(xi), i ∈ [m], and the reweighting distribution Dt:

φt =

{
Arfb ([xi; yi]

m
i=1,D1) t = 1,

Arfb ([xi, ft−1(xi); yi]
m
i=1,Dt) t > 1.

(4)

Using these random forests block functions φts, we can define the t-layer casForest model as:

ht(x) =

{
φt(x) t = 1,

φt ([x, ft−1(x)]) t > 1,
(5)

ft : X → C is defined as follows:

ft(x) =

{
αtht(x) t = 1,

αtht (x) + ft−1(x) t > 1,
(6)

3



Algorithm 1 Random forests block Arfb [33]
Input: A training set S drawn from Dt and the augmented feature ft−1(xi),∀i ∈ [m].
Output: The function computed by the random forests block in the t-th layer: φt.

1: Divide S to k-fold subsets {S1, . . . , Sk} randomly.
2: for Si in {S1, S2, . . . , Sk} do
3: Using S/Si to train two random forests and two completely random forests.
4: Compute the prediction rate pit(j) for the j-th leaf node generated by S/Si.
5: φt([x, ft−1(x)])← Ej [pit(j)], for any training sample (x, y) ∈ Si.
6: end for
7: φt([x, ft−1(x)])← Ei,j [pit(j)], for any test sample (x, y) ∈ D.
8: return The function computed by the random forests block in the t-th layer: φt.

where αt and Dt need to be optimized and updated.

Here, we find that the t-layer casForest model is defined by a recursive formula:

ht(x) = φt ([x, ft−1(x)]) = φt

([
x,

t−1∑
l=1

αlhl(x)

])
. (7)

Unlike all the weak classifiers of AdaBoost which are chosen from the same hypothesis set H,
the hypothesis set of the t-layer casForest model contains that of the (t − 1)-layer, similar to the
hypothesis sets of the deep neural networks (DNNs) at different depths, i.e.,Ht−1 ⊂ Ht,∀t ≥ 2.

The PRECONC process is difficult to analyze. For simplicity, here we do not consider the influence
of the feature augmentation process though it is very crucial for deep forest. Instead, we only
consider the hypotheses based on the original feature space, and thus the entire additive cascade
model F̃ : X → Y is defined as follows:

F̃ (x) = σ̃(F (x)) = arg max
j∈{1,2,...,s}

[
T∑
t=1

αth
j
t (x)

]
, (8)

where F (x) is the final prediction vector of the casForest model for classification and σ̃ denotes a
map from average prediction score vector to a label.

With such a simplicity, the casForest structure has relation to Cortes et al. [8, 9] and Huang et al.
[17]. However, in the next section we will see that we prove that the generalization error of casForest
can be bounded by O(lnm/m+ λ

√
lnm/m), when the margin ratio related to the margin standard

deviation against the margin mean is sufficient small. This bound is tighter than the generalization
bound O(lnm/m) for Deep Boosting [8, 9, 17].

3 Generalization Analysis

In this section, we analyze the generalization error to understand the sample complexity of the
casForest model. For simplicity, we consider the binary classification2 task. We define the strong
classifier (the T -layer casForest model) as F (x) =

∑T
t=1 αtht(x), i.e., casForest is formulated as an

additive model. Now we define the margin for sample (x, y) as yF (x) ∈ [−1, 1], which implies the
confidence of prediction. We assume that the hypothesis setH of base classifiers {h1, h2, . . . , hT }
can be decomposed as the union of T families H1,H2, . . . ,HT ordered by increasing complexity,
where ∀t ≥ 1,Ht ⊂ Ht+1 and ht ∈ Ht. Remarkably, the complexity term of our bound admits an
explicit dependency in terms of the mixture coefficients defining the ensembles. Thus, the ensemble
family we consider is F = conv(

⋃T
t=1Ht), which is the family of functions F (x) of the form

F (x) =
∑T
t=1 αtht(x), where α = (α1, . . . , αT ) is in the simplex ∆.

For a fixed g = (g1, . . . , gT ), any α ∈ ∆ defines a distribution over {g1, . . . , gT }. Sampling
from {g1, . . . , gT } according to α and averaging leads to functions G = 1

n

∑T
i=1 ntgt for some

2In the binary classification, we can redefine the output of the strong classifier F (x) as a variable in [−1, 1],
e.g. the difference between two prediction scores, where F̃ (x) = sign(F (x)) is the predicted label. The
previous bounds [8, 9, 17] are based on binary classification, therefore, our result is comparable with them.
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n = (n1, . . . , nT ), with
∑T
t=1 nt = n, and gt ∈ Ht. For any N = (N1, . . . , NT ) with |N| = n, we

consider the family of functions

GF,N =

 1

n

T∑
k=1

Nk∑
j=1

gk,j

∣∣∣∣∣∣ ∀(k, j) ∈ [T ]× [Nk], gk,j ∈ Hk

 , (9)

and the union of all such families GF,n =
⋃
|N=n| GF,N. For a fixed N, the size of GF,N can be

bounded as follows: ln |GF,N| ≤ n ln
∑T
t=1 αt|Ht|. Our margin distribution theory is based on a

bound based on the margin mean and a Bernstein-type bound follows:

Lemma 1. ([16]) For F =
∑T
t=1 αtht ∈ F and G ∈ GF,n, we have

Pr
S,GF,n

[yG(x)− yF (x) ≥ ε] ≤ exp

(
−nε2

2− 2E2
S [yF (x)] + 4ε/3

)
. (10)

Lemma 2. ([16]) For independent random variables X1, X2, . . . , Xm(m ≥ 5) with values in [0, 1],
and for δ ∈ (0, 1), with probability at least 1− δ we have

1

m

m∑
i=1

E[Xi]−
1

m

m∑
i=1

Xi ≤

√
2V̂m ln(2/δ)

m
+

7 ln(2/δ)

3m
(11)

where V̂m =
∑
i 6=j(Xi −Xj)

2/2m(m− 1)

Since the gap between the margin of strong classifier yF (x) and that in the union family GF,N
is bounded by a function related to the margin mean ES [yF (x)], we can further obtain a margin
distribution theorem as follows:
Theorem 1. Let D be a distribution over X × Y and S be a training set of m samples drawn from
D. With probability at least 1− δ, for r > 0, the strong classifier F (x) (the T -layer casForest model)
satisfies that

Pr
D

[yF (x) < 0] ≤ inf
r∈(0,1]

[
Pr
S

[yF (x) < r] +
1

md
+

3
√
µ

m3/2
+

7µ

3m
+ λ

√
3µ

m

]
where

d =
2

1− E2
S [yF (x)] + r/9

> 2, µ = lnm ln(2

T∑
t=1

αt|Ht|)/r2 + ln
2

δ
, λ =

√
Var[yF (x)]

E2
S [yF (x)]

.

Proof. For F =
∑T
t=1 αtht ∈ F and G ∈ GF,n, we have EG∈GF,n

[G] = F . For β > 0, the
Chernoff’s bound gives

Pr
D

[yF (x) < 0] = Pr
D,GF,n

[yF (x) < 0, yG(x) ≥ β] + Pr
D,GF,n

[yF (x) < 0, yG(x) < β]

≤ exp(−nβ2/2) + Pr
D,GF,n

[yG(x) < β]. (12)

Recall that |GF,N | ≤
∏T
t=1 |Ht|Nt for a fixed N . Therefore, for any δn > 0, combining the union

bound with the Lemma 2 guarantees that with probability at least 1 − δn over sample S, for any
G ∈ GF,N and β > 0

Pr
D

[yG(x) < β] ≤ Pr
S

[yG(x) < β] +

√√√√ 2

m
V̂m ln

(
2

δ

T∏
t=1

|Ht|Nt

)
+

7

3m
ln

(
2

δ

T∏
t=1

|Ht|Nt

)
(13)

≤ Pr
S

[yG(x) < β] +

√√√√2n

m
V̂m

T∑
i=1

αt ln

(
2|Ht|
δ

)
+

7n

3m

T∑
i=1

αt ln

(
2|Ht|
δ

)
(14)
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≤ Pr
S

[yG(x) < β] +

√√√√2n

m
V̂m ln

(
2
∑T
i=1 αt|Ht|
δ

)
+

7n

3m
ln

(
2
∑T
i=1 αt|Ht|
δ

)
(15)

where

V̂m =
∑
i 6=j

(I[yiG(xi) < β]− I[yjG(xj) < β])2

2m(m− 1)
, (16)

The inequality (14) is a large probability bound when n is large enough and inequality (15) is
according to the Jensen’s Inequality. Since there are T at most Tn possible T -tuples N with |N | = n,
by the union bound, for any δ > 0, with probability at least 1− δ, for all G ∈ GF,n and β > 0:

Pr
D

[yG(x) < β] ≤ Pr
S

[yG(x) < β] +

√√√√2n

m
V̂m ln

(
2
∑T
i=1 αt|Ht|
δ/Tn

)
+

7n

3m
ln

(
2
∑T
i=1 αt|Ht|
δ/Tn

)
(17)

Meantime, we can rewrite V̂m

V̂m =
∑
i6=j

(I[yiG(xi) < β]− I[yjG(xj) < β])2

2m(m− 1)
(18)

=
2m2 PrS [yG(x) < β] PrS [yG(x) ≥ β]

2m(m− 1)
(19)

=
m

m− 1
V̂ ∗m (20)

For any θ1, θ2 > 0, we utilize Chernoff’s bound to get:

V̂ ∗m = Pr
S

[yG(x) < β] Pr
S

[yG(x) ≥ β] (21)

≤ 3 exp(−nθ21/2) + Pr
S

[yF (x) < β + θ1] Pr
S

[yF (x) ≥ β − θ1] (22)

≤ 3 exp(−nθ21/2) + Pr
S

[yF (x) < β + θ1 |ES [yF (x)] ≥ β + θ1 + θ2 ] (23)

· Pr
S

[yF (x) ≥ β − θ1|ES [yF (x)] ≥ β + θ1 + θ2]

≤ 3 exp(−nθ21/2) +
Var[yF (x)]

θ22
According to Chebyshev’s Inequality

≤ 3 exp(−nθ21/2) +
Var[yF (x)]

(ES [yF (x)]− β + θ1)2
' 3 exp(−nθ21/2) +

Var[yF (x)]

E2
S [yF (x)]

(24)

where Var[yF (x)] = ES [(yF (x))2]− E2
S [yF (x)] is the variance of the margins.

From Lemma 1, we obtain that

Pr
S

[yG(x) < β] ≤ Pr
S

[yF (x) < β + θ1] + exp

(
−nθ21

2− 2E2
S [yF (x)] + 4θ1/3

)
(25)

Let θ1 = r/6, β = 5r/6 and n = lnm/r2, we combine (12)(15)(24)(25), the proof is completed.

Remark 1. From Theorem 1, we know that the gap between the generalization error and the empirical
margin loss is generally bounded by the term O(λ

√
lnm/m+ lnm/m), which is controlled by the

ratio related to the margin standard deviation against the margin mean λ. This ratio implies that the
larger margin mean and the smaller margin variance can reduce the generalization error of models
properly, which is crucial to alleviating the overfitting problem. When the margin distribution is
good enough (the margin mean is large and the margin variance is small), O(lnm/m) will dominate
the sample complexity. Then, this bound is tighter than the O(

√
lnm/m) rate as demonstrated in

previous theoretical works about Deep Boosting [8, 9, 17].
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Algorithm 2 mdDF (margin distribution Deep Forest)
Input: Training set S = {(x1, y1), . . . , (xm, ym)} and random forests block algorithm Arfb.
Output: The final additive cascade model F̃ .

1: Initialize α0 ← 1, f0 ← ∅
2: Initialize sample weights: D1(i)← 1

m ,∀i ∈ [m]
3: for t = 1, 2, . . . , T do
4: φt ← the random forests block returned by Arfb([xi, ft−1(xi); yi]

m
i=1,Dt).

5: ht(xi)← φt ([xi, ft−1(xi)]) ,∀i ∈ [m].
6: γt(xi)← hyt (xi)−maxj 6=y h

j
t (xi),∀i ∈ [m].

7: αt ← arg min
αt

ES [`md(
∑t
l=1 αlγl(x))]

8: ft(xi)← αtht (xi) + ft−1(xi),∀i ∈ [m].

9: Dt+1(i)← `md(
∑t

l=1 αlγl(xi))∑m
i=1 `md(

∑t
l=1 αlγl(xi))

,∀i ∈ [m].

10: end for
11: return F̃ ← arg max

j∈{1,2,...,s}

[∑T
t=1 αth

j
t

]
.

Remark 2. As for the overfitting risk of the model (due to the large complexity), our bound inherits
the result of Cortes et al. [8]. The cardinality of the hypothesis set F = conv(

⋃T
t=1Ht) is controlled

by the mixture coefficients αts in (1).
∑T
t=1 αt|Ht| in our bound implies that it is not detrimental to

generalization if the corresponding mixture weight is relatively small, while some hypothesis sets
used for learning could have large complexity. In other words, the coefficients αts need to minimize
the expected margin distribution loss ES [`md(

∑t
l=1 αlγl(x))], which estimates the generalization

error of the additive casForest model.

4 Optimization

The generalization analysis shows the importance of optimizing the margin ratio λ and the mixture
coefficients αts. Since we formulate casForest as an additive model, we utilize the reweighting
approach to minimize the expected margin distribution loss

ES

[
`md

(
t∑
l=1

αlγl(x)

)]
, (26)

where the margin distribution loss function `md is designed to utilize the first- and second-order
statistics of margins, and γl(x) denotes the margin in the l-th layer. The scalar αt is determined by
minimizing the expected loss for the t-layer model.

The mdDF algorithm (Algorithm 2). We denote a prediction score space by C = Rs, where
s is the number of classes. When each sample passes through the forest model, we will get an
average prediction vector in each layer: ht(·) =

[
h1t (·), h2t (·) . . . , hst (·)

]
∈ C. According to

Crammer & Singer [10], we can define the margin of sample γt(·) for multi-class classification as:
γt(·) := hyt (·)−maxj 6=y h

j
t (·), i.e., the confidence of prediction.

The initial sample weights are [1/m, 1/m, . . . , 1/m], and we update the i-th weight by

Dt+1(i) =
`md

(∑t
l=1 αlγl(xi)

)
∑m
i=1 `md

(∑t
l=1 αlγl(xi)

) , (27)

where the margin distribution loss function `md(·) is defined by Zhang & Zhou [28] to optimize the
first- and second-order statistics of margins as follows:

`md(z) =

{
(z−γ)2
γ2 z ≤ γ,

µ(z−γ)2
(1−γ)2 z > γ,

(28)
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where hyper-parameter γ is a parameter as the margin mean and µ is a parameter to trade off two
different kinds of deviation (keeping the balance on both sides of the margin mean). Obviously, this
margin distribution loss function will enforce the band that has a lower loss to contain the sample
points as many as possible. In practice, we generally choose these two hyper-parameters from the
finite sets γ ∈ {0.7, 0.75, 0.8, 0.85, 0.9, 0.95} and µ ∈ {0.01, 0.05, 0.1}. The algorithm utilizing the
margin distribution optimization is summarized in Algorithm 2.

5 Experiments

Datasets and configuration. We choose eight classification benchmark datasets with different
scales. The datasets vary in size: from 1484 up to 78823 instances, from 8 up to 784 features, and
from 2 up to 26 classes. From the literature, these datasets come pre-divided into training and testing
sets. Therefore in our experiments, we use them in their original format. PROTEIN, SENSIT, and
SATIMAGE datasets are obtained from LIBSVM datasets [4]. Except for MNIST [18] dataset, others
come from the UCI Machine Learning Repository [11]. Based on the attribute characteristics of the
dataset, we classify the datasets into three categories: categorical, numerical, and mixed modeling
tasks. We conjecture that some numerical modeling tasks such as image or audio recognition are
very suitable for DNNs. Some operations, such as convolution, exactly fit well with numerical signal
modeling. The deep forest model is not developed to replace DNNs for such tasks; instead, it offers
an alternative when DNNs are not superior, e.g., deep forests are good at the categorical/symbolic or
mixed modeling tasks especially [33].

In mdDF, we take two random forests and two completely-random forests in each layer, and each
forest contains 100 trees, whose maximum depth of trees in random forests grows with the layer, i.e.,
d
(t)
max ∈ {2t+2, 4t+4, 8t+8, 16t+16}. To reduce the risk of overfitting, the representation learned

by each forest is generated by k-fold cross-validation (k = 5 in our experiments). In Algorithm 1,
each instance will be used as training data for (k − 1) times, and produce the final class vector as
augmented features for the resulting in (k − 1) class vectors, that are averaged to the next layer.

We compare mdDF with the other four common used algorithms on different datasets: multilayer
perceptron (MLP), random forest (RF) [3], XGBoost [5] and gcForest [32]. Here, we set the same
number of forests as mdDF in each layer of gcForest. For random forests, we set 400× k trees; and
for XGBoost, we also take 400× k trees. As for other hyper-parameters, we set them as the default
values. For the multilayer perceptron (MLP) configurations, we use ReLU for the activation function,
cross-entropy for the loss function, adadelta for optimization, no dropout for hidden layers according
to the scale of training data. The network structure hyper-parameters, however, could not be fixed
across tasks. Therefore, for MLP, we examine a variety of architectures on the validation set, and
pick the one with the best performance, then train the whole network again on the training set and
report the test accuracy. The examined architectures are listed as follows: (1) input-1024-512-output;
(2) input-16-8-8-output; (3) input-70-50-output; (4) input-50-30-output; (5) input-30-20-output.

Test accuracy on benchmark datasets. Table 1 shows that mdDF achieves better accuracy than
the other methods on several datasets. Compared with the MLP method, the deep forest models

Table 1: Left: Comparison results between mdDF and the other tree-based algorithms on test accuracy
with different datasets. The best accuracy on each dataset is highlighted in bold type. • indicates the
second best accuracy on each dataset. The average rank is listed at the bottom. Right: Comparison
results between the standard mdDF structure and the other mdDF structures.

Dataset Attribute MLP RF XGBoost gcForest mdDF mdDFSF mdDFST mdDFNP

ADULT Categorical 80.597 85.818 85.904 86.276 • 86.560 86.200 85.710 85.650
YEAST Categorical 59.641 61.886 59.161 63.004 • 63.340 63.000 62.780 62.556

LETTER Categorical 96.025 96.575 95.850 97.375 • 97.500 96.475 97.300 96.975
PROTEIN Categorical 68.660 68.071 71.214 • 71.009 71.247 71.127 70.291 68.509

HAR Mixed 94.231 • 92.569 93.112 94.224 94.600 93.926 94.290 94.060
SENSIT Mixed 78.957 80.133 81.874 82.334 • 82.534 82.014 80.412 80.320

SATIMAGE Numerical 91.125 91.200 90.450 91.700 • 91.750 91.600 91.300 90.800
MNIST Numerical 98.621 • 96.831 97.730 98.252 98.734 98.254 98.101 98.240

Avg. Rank - 3.650 4.000 3.750 2.375 1.000 - - -
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(b) The multi-layer feature visualization of the mdDF al-
gorithm on HAR training set. The ratios of the intra-class
variance to the inter-class variance SA/SE are (3.88, 1.97).

Figure 2: The relation between the margin ratio and learning ability in the different layers.

almost outperform on these datasets and obtain the top 2 test accuracy on categorical or mixed
modeling tasks. Obviously, gcForest and mdDF perform better than the shallow ones, and mdDF
with reweighting and boosting representations outperforms gcForest across these datasets. The
empirical results show that the deep models provide an improvement in performance with in-model
transformation, compared to the shallow models that only have invariant features.

Comparison with the other mdDF structures In Table 1, we compare our mdDF structure with
the three other mdDF structures on different datasets: (1) mdDF using same forests (use 4 random
forests) named mdDFSF; (2) mdDF using stacking (only transmit the prediction vectors to next layer)
named mdDFST; (3) mdDF without PRECONC (only transmit the input feature vector to next layer)
named mdDFNP. In this way, we explore the importance of internal structures of the mdDF. When
we remove a concrete structure and control other variables, the performance of the mdDF algorithm
will be worse. The empirical results demonstrate the effectiveness of these specific structures.

Relation between the margin ratio and learning ability. Figure 2(a) plots the accuracy and
margin ratio of mdDF on the HAR dataset. It demonstrates clearly that the performance is consistent
with the margin ratio. When the margin ratio is smaller, i.e., the margin std/mean is smaller, the
performance is better. Figure 2(b) plots the t-SNE visualization of mdDF on the HAR dataset. We also
use the variance decomposition in the 2D space. The result shows that the intra-class compactness and
inter-class separability are getting better as the layers becomes deeper. Such a correlation validates
the theoretical result of our refined margin distribution analysis.

6 Conclusion

Recent studies propose a few tree-based deep models to learn the representations from a broad range
of tasks and achieve good performance. By formulating casForest as an additive model, we partially
explain the success of it from the perspective of the margin theory. The theoretical results inspires us
to design a margin distribution reweighting approach that improves the generalization performance.
Then, the empirical studies validate our theoretical results. We will explore how to understand the
effectiveness of the PRECONC operation (which is crucial for feature enrichment) in future work.
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