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a b s t r a c t

Recent research has used margin theory to analyze the generalization performance for deep neural
networks (DNNs). The existed results are almost based on the spectrally-normalized minimum margin.
However, optimizing the minimum margin ignores a mass of information about the entire margin
distribution, which is crucial to generalization performance. In this paper, we prove a generalization
upper bound dominated by the statistics of the entire margin distribution. Compared with the
minimum margin bounds, our bound highlights an important measure for controlling the complexity,
which is the ratio of the margin standard deviation to the expected margin. We utilize a convex
margin distribution loss function on the deep neural networks to validate our theoretical results by
optimizing the margin ratio. Experiments and visualizations confirm the effectiveness of our approach
and the correlation between generalization gap and margin ratio.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Deep neural networks (DNNs) are making major advances in
olving problems that have resisted the best attempts of the
rtificial intelligence community for many years (LeCun, Bengio,
Hinton, 2015), especially in the field of computer vision (Gori,
022). Recently, many research try to explain the practical suc-
ess of DNNs via generalization, which is the ability of a classifier
o perform well on unseen samples. However, some new empiri-
al evidence has started to question this explanation. Adversarial
raining samples can cause the model to misclassify seriously
y slight feature perturbation (Goodfellow, Shlens, & Szegedy,
015; Papernot et al., 2017). On the other hand, Zhang, Ben-
io, Hardt, Recht, and Vinyals (2021) find that the deep neural
etworks have enough complexity to fit an arbitrarily corrupted
ata, and a small geometric transformation may cause networks
eteriorating in performance (Azulay & Weiss, 2019). This com-
lex and fragile nature of DNNs leads to a key problem, how
o use the data distribution and network parameters to estimate
he generalization ability of DNNs. Although several regulariza-
ion techniques, such as dropout (Srivastava, Hinton, Krizhevsky,
utskever, & Salakhutdinov, 2014), batch normalization (Ioffe &
zegedy, 2015), and weight decay (Krogh & Hertz, 1992), do im-
rove the generalization performance of the over-parameterized
eep models, Zhang et al. (2021) show that these regularizers
annot solve this problem either.
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Consequently, several recent works (Arora, Ge, Neyshabur, &
Zhang, 2018; Bartlett, Foster, & Telgarsky, 2017; Neyshabur, Bho-
janapalli, & Srebro, 2018; Neyshabur, Tomioka, & Srebro, 2015)
have started to address this question, proving that we can control
the capacity of DNNs via different upper bounds based on the
minimum margin. However, the generalization bounds based on
analyses of model complexity and noise stability only focus on the
minimum margin, which is based on the closest distance of the
training points to the decision boundary. This notion is brittle and
sensitive to outliers due to a lack of the entire margin distribution
information. Jiang, Krishnan, Mobahi, and Bengio (2019) propose
a measure by looking at the entire distribution of distances, and
conduct empirical studies on how well it can predict the general-
ization gap. However, how the margin distribution information
affects the generalization error of the model still needs more
specific theoretical analysis, which will lead us to optimize the
entire margin distribution appropriately.

The margin distribution has been shown to correspond to
generalization properties in the literature on linear models and
boosting algorithms, Schapire, Freund, Barlett, and Lee (1997) first
introduce it to explain the phenomenon that AdaBoost seems
resistant to overfitting problem. Two years later, Breiman (1999)
indicates that the minimum margin is crucial for margin theory.
Reyzin and Schapire (2006) conjecture that the margin distri-
bution, rather than the minimum margin, plays a key role. The
debate has been finally solved by Gao and Zhou (2013) who the-
oretically proved that the AdaBoost process attempts to maximize
the margin mean and minimize margin variance simultaneously;
highlighting for the first time that two factors rather than a single
deep neural networks by leveragingmargin distribution. Neural Networks (2022),
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actor are crucial for margin theory. These two factors are the
irst and second-order statistics describing the margin distribu-
ion, while in most cases the higher-order one is less useful.
heir result successfully explains why AdaBoost seems resistant
o overfitting: even when the training error reaches zero, the
argin mean can be increased and/or the margin variance can be
ecreased further, leading to the improvement of generalization
erformance; it also discloses that AdaBoost will finally overfit:
hen the margin mean cannot be increased and margin variance
annot be decreased further. The long march of the theoretical ex-
loration of AdaBoost is summarized in Zhou (2014), and Gao and
hou (2013)’s result has been theoretically confirmed by Grøn-
und, Kamma, Larsen, Mathiasen, and Nelson (2019). Inspired
y Gao and Zhou (2013)’s finding, powerful learning machines
an be built by maximizing the margin mean and minimizing
argin variance simultaneously, rather than simply maximizing

he minimum margin like in traditional large-margin machines.
hang and Zhou (2019) propose the optimal margin distribution
achine (ODM) for binary classification. In Tan, Tan, Jiang, and
hou (2020), Zhang, Zhao, and Jin (2020), Zhang and Zhou (2017,
018a, 2018b), ODM is extended to many forms.
In this paper, we study a d-layer feed-forward network with

eLU activation functions. Our theoretical result states that the
tatistics of margin distribution play an important role in the
eneralization estimation rather than the traditional minimum
argin. This result is consistent with the previous results on
oosting and linear algorithms (Gao & Zhou, 2013; Schapire et al.,
997; Zhang & Zhou, 2019). It also inspires us to understand
he similarities between deep learning and traditional machine
earning from the perspective of margin distribution. Specially,
e propose a new loss function to optimize the statistics-based
easure in the theoretical results. A strong correlation between
eneralization and our measure is empirically shown by studying
wide range of network structures trained on the MNIST, CIFAR-
0 and ImageNet datasets. The detailed contributions of this
aper are as follows:

AC guarantee. Our bound shows that we can restrict the capac-
ty of deep nets by the ratio of second- to first-order statistic of
argin distribution at the last layer. Compared with the existing

esults based on minimum margin (Arora et al., 2018; Bartlett
t al., 2017; Neyshabur et al., 2018), our bound contains more
nformation on the entire margin distribution to estimate the
eneralization error. Moreover, the empirical evaluation shows
hat optimizing the margin ratio can control the model capacity
o alleviate the overfitting risk.

ptimization. Inspired by our theoretical result, we encourage
NNs to optimize the margin ratio for better generalization per-
ormance. Therefore, we propose a new approach called margin
istribution Networks (mdNet), which utilizes a convex margin
istribution loss function to optimize the first- and second-order
tatistics of margin. Moreover, we empirically evaluate our loss
unction on deep neural networks across different image datasets
nd model structures. Specifically, empirical results demonstrate
he effectiveness of the proposed method in learning tasks with
imited training data.

The rest of paper is organized as follows. The related work is
ntroduced in Section 2. Some notations are introduced in Sec-
ion 3. In Section 4, we present a generalization bound leveraging
argin distribution rather than minimum margin and demon-
trate that the ratio of the margin standard deviation to the
xpected margin is the key to control the model capacity. Sec-
ion 5 lists the detailed proofs for our theorems and lemmas.
n Section 6, we formulate the convex loss function to optimize
he margin ratio. Section 7 reports our experimental studies and
mpirical observations. Finally, Section 8 concludes with future
ork.
2

2. Related work

Recently, margin-based deep learning algorithms have devel-
oped rapidly. Schroff, Kalenichenko, and Philbin (2015) use the
triplet loss to encourage a distance constraint similar to the con-
trastive loss. Similarly, Chan et al. (2015) enhance the supervision
of the learned filters by incorporating the information of class
labels in the training data and learn the filters based on the idea
of multi-class linear discriminant analysis (LDA) for classifica-
tion task. Liu, Wen, Yu, and Yang (2016) propose a generalized
large-margin softmax loss which explicitly encourages intra-class
compactness and inter-class separability in the learned representa-
tion space. It would be interesting to theoretically study feature
space transformation which might be a key to understanding
mysteries behind the successes of deep neural networks (Zhou,
2021). Since Arora et al. (2018) and Bartlett et al. (2017) associate
the generalization of deep neural networks with the minimum
margin, a line of work establishes that first-order methods can
automatically maximize the minimum margin in the settings
of logistic regression (Gunasekar, Lee, Soudry, & Srebro, 2018a),
deep linear networks (Gunasekar, Lee, Soudry, & Srebro, 2018b;
Ji & Telgarsky, 2019; Li, Ma, & Zhang, 2018; Soudry, Hoffer,
Nacson, Gunasekar, & Srebro, 2018), and symmetric matrix fac-
torization (Li et al., 2018). However, Wei, Lee, Liu, and Ma (2018)
point that how to extend these results to non-linear neural net-
works remains unclear. Recently, Wu, Jing, Du, and Chen (2021)
propose to understand the model dynamics from the perspective
of control theory. Another line of algorithm-dependent analysis
of generalization (Chen, Jin, & Yu, 2018; Hardt, Recht, & Singer,
2016; Mou, Wang, Zhai, & Zheng, 2018) uses stability of specific
optimization algorithms that satisfy certain generic properties
like convexity, smoothness, etc. Specially, Dinh, Pascanu, Ben-
gio, and Bengio (2017), Keskar, Mudigere, Nocedal, Smelyanskiy,
and Tang (2017) and Zhu, Wu, Yu, Wu, and Ma (2019) make
a connection between the sharpness of the solution obtained
using the SGD algorithm and its ability to generalize well. The
notion of sharpness corresponds to robustness to adversarial per-
turbations of parameters. Furthermore, Neyshabur, Bhojanapalli,
McAllester, and Srebro (2017) and Neyshabur et al. (2018) draw a
connection to the PAC-Bayesian theory for sharpness. The margin
distribution measure presented in this paper is closely related to
sharpness (Keskar et al., 2017), because we use the statistics of
the margin distribution to theoretically describe the value of the
allowable perturbation. Compared with the sharpness measure
which is difficult to optimize, the margin distribution measure
proposed in this paper is easy to calculate, and can be directly
optimized through the SGD algorithm by designing a convex loss
function. Recently, Jiang et al. (2019) present abundant empirical
evidence to validate that the generalization in deep learning
can be estimated from the margin statistics. In addition, the
relevant theories of domain adaptation (Mansour, Mohri, & Ros-
tamizadeh, 2009; Mansour & Schain, 2014; Zhang, Zhang, & Ye,
2012) are also used to improve the generalization capability
of deep learning (Becker, Christoudias, & Fua, 2013; Koniusz,
Tas, & Porikli, 2017; Pan, Tsang, Kwok, & Yang, 2009; Rozant-
sev, Salzmann, & Fua, 2019). Domain generalization cannot see
existing training source domains during training. This makes
domain generalization more challenging than domain adaptation
but more realistic and favorable in practical applications (Dubey,
Ramanathan, Pentland, & Mahajan, 2021; Ghifary, Kleijn, Zhang,
& Balduzzi, 2015; Matskevych, Wolny, Pape, & Kreshuk, 2022;

Wang, Lan, Liu, Ouyang, & Qin, 2021).
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. Notations

Consider the multi-class task with feature domain X and label
omain Y . Let D be an unknown (underlying) distribution over

X × Y . A training set S = {(x1, y1), . . . , (xm, ym)} and a valida-
ion set S ′

= {(x1, y1), . . . , (xm′ , ym′ )} are drawn identically and
independently according to D. We denote a labeled sample as
(x, y) ∈ D.

Let fw : XB,n → Y ′ be the function represented by a d-layer
eed-forward network with parameters

= {W 1,W 2, . . . ,W d}

nd output domain Y ′
= Rk. The entire network can be formu-

ated as

w(x) = W dφ(W d−1φ(. . . φ(W 1x))),

here φ is the ReLU activation function and let ρ be an upper
ound on the number of output units in each layer.
We can define the fully connected networks (FNNs) recur-

ively:
1

= W 1x and xi = W iφ(xi−1),

where xi denotes the output of the ith layer.
The predicted label is denoted by

h(x) = argmax
j

fw,j(x) ∈ H,

where h :X → Y is a map from the feature domain to the label
domain and fw,j is the jth element of the score vector.

In the multi-class setting (Mohri, Rostamizadeh, & Talwalkar,
2018, Chapter 9.2), the label associated to point x is the one
resulting in the largest score h(x) = argmaxi fw,i(x). This naturally
leads to the following definition of the margin γh(x, y) of the
function h at a labeled example (x, y):

γh(x, y) = fw,y(x) − max
j̸=y

fw,j(x). (1)

Thus, h misclassifies (x, y) iff γh(x, y) < 0.

4. Margin distribution rather than minimum margin

In Section 4.1, we list error-resilience assumptions that will
be used. In Section 4.2, we introduce the existed results based on
the minimum margin. In Section 4.3, we present our main results
based on the entire margin distribution.

4.1. Error-resilience assumptions

Here we formalize the error-resilience properties for deep
neural networks. Arora et al. (2018) show that if we inject a scaled
Gaussian noise to the input of deep nets, as it propagates up,
the noise has rapidly decreasing effect on higher layers. This fact
implies compressibility of deep nets, i.e., low rank of parameters’
matrix. The empirical version of noise-sensitivity parameters is
first proposed by Arora et al. (2018). It inspires us to bound the
perturbation caused by Gaussian noise with the validation-based
version of noise-sensitivity parameters below.

Assumption 1 (Layer Cushion). The layer cushion of layer i is
defined to be largest number µi such that for any validation data
x ∈ S ′:

µi∥W i∥F∥φ(xi−1)∥2 ≤ ∥xi∥2. (2)

Assumption 2 (Interlayer Cushion). For any two layers i < j, we
define the interlayer cushion µi,j, as the largest number such that
for any validation data x ∈ S ′:

µ ∥J i,j∥ ∥φ(xi−1)∥ ≤ ∥xj∥ . (3)
i,j xi F 2 2

3

Furthermore, for any layer i we define the minimal interlayer
cushion as µi→ = mini≤j≤L µi,j = min{

1
√

ρ
,mini≤j≤L µi,j}. For

any two layer i < j, denote by M i,j the operator for composi-
tion of these layers and J i,jx be the Jacobian matrix (the partial
derivative) of this operator at input x. Therefore, we have xj =

M i,j(xi). Furthermore, since the activation functions are ReLU
(hence piece-wise linear), we have M i,j(xi) = J i,jxi x

i.

Assumption 3 (Interlayer Smoothness). For any two layers i < j,
we define the interlayer smoothness ρδ as the smallest number
such that with probability 1 − δ over noise η for any validation
data x ∈ S ′:

∥M i,j(xi + η) − J i,jxi (x
i
+ η)∥ ≤

∥η∥∥xj∥
ρδ∥xi∥

(4)

For a single layer, ρδ captures the ratio of input/weight align-
ment to noise/weight alignment. Arora et al. (2018) show that the
interlayer smoothness is indeed good: 1/ρδ is a small constant.

The next two conditions qualify a common appearance: if the
input in the activation and margin calculations is well-distributed
and the calculations do not correlate with the magnitude of
the input, then one would expect that, the effect of applying
activation at any layer and margin at last layer is to decrease the
norm of the vector by at most some small constant factor, i.e., c
nd α.

ssumption 4 (Activation Contraction). The activation contraction
is defined as the smallest number such that for any layer i and
ny validation data x ∈ S ′:

∥φ(xi)∥2 ≥ ∥xi∥2. (5)

Assumption 5 (Margin Contraction). The margin contraction α is
defined as the smallest number such that for any validation data
x ∈ S ′:

α∥γh(x, y)∥2 ≥ ∥xd∥2. (6)

In this paper, we only use the noise-sensitivity parameters in
Assumptions 1–5 as descriptions of error-resilience properties,
from which the margin distribution term of our bound is derived.
Therefore, we just need estimate these parameters based on
validation data to show the magnitude of our bound rather than
optimizing these parameters in the training process like Arora
et al. (2018) did.

4.2. Existed results

In the deep learning theory community, great efforts have
been made to explain why over-parameterized deep neural net-
works can success, which is contrary to the classical VC dimen-
sion analysis (Bartlett, Maiorov, & Meir, 1998; Harvey, Liaw, &
Mehrabian, 2017). Bartlett et al. (2017) and Neyshabur et al.
(2018) made an important stride by showing minimum margin
based bounds for multi-layer neural networks. These bounds do
not depend directly on the number of parameters of the network
but depends on the normalized minimum margin. Theorem 1
provides a unified description of these bounds. The only differ-
ence between them lies in the value of constants and the type of
norms.
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Fig. 1. Illustration of the margin distribution analysis and loss functions. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Theorem 1 (Bartlett et al., 2017; Neyshabur et al., 2018). For any
d, ρ > 0 and ∥x∥2 ≤ B, let fw : X → Rk be a d-layer feed-
orward network with ReLU activation. Then, for any δ > 0, with
robability ≥ 1 − δ over a training set of size m, for any w =

W 1,W 2, . . . ,W d}, we have:

0 (fw) ≤ L̂γ (fw)

+ O

⎛⎜⎜⎝
√B2d2ρ ln(dh)Πd

i=1 ∥W i∥
2
2
∑d

i=1
∥W i∥

2
F

∥W i∥
2
2

+ ln dm
δ

γ 2m

⎞⎟⎟⎠ ,

(7)

where L0(·) is the 0–1 loss, L̂γ (·) = PrS [γh(x, y) ≤ γ ] is the empirical
estimation of γ -margin loss and O(·) describes the limiting behavior
of a function.

Based on this margin theory view, Arora et al. (2018) provide
an improved bound by considering the compressibility of deep
nets as follows:

Theorem 2 (Arora et al., 2018). For any d > 0, let fw : X → Rk be
a d-layer feed-forward network with ReLU activation. Then, for any
δ > 0, with probability ≥ 1− δ over a training set of size m, for any
w = {W 1,W 2, . . . ,W d}, we have:

L0 (fw) ≤ L̂γ (fw) + O

⎛⎜⎝
√ c2d2 maxx∈S ∥fw(x)∥2

2
∑d

i=1
1

µ2
i µ2

i→

γ 2m

⎞⎟⎠ (8)

where µi, µi→, c, α are layer cushion, interlayer cushion, activation
contraction and interlayer smoothness defined in Assumptions 1, 2,
4 and 5 respectively

These existed results follow the traditional margin theory, so
they only focus on the minimum margin γ . Because they lack the
escription of the entire margin distribution, they can only take
he minimum margin γ as the optimization target to improve the
eneralization performance. These methods ignore the informa-
ion of the entire margin distribution. In the next subsection, we
xpect to prove a bound related to the entire margin distribution,
o as to inspire us to directly optimize margin distribution for
mproving the generalization performance for DNNs.

.3. Main results

We begin with an intuitive comparison of the minimum mar-
in based classifier and the margin distribution based classifier.
4

Fig. 1(a) shows that maximizing the minimum margin will make
the classifier easy to be misled by a small number of samples, thus
ignoring the distribution information of samples, while the mar-
gin distribution based classifier considers the mean and variance
of samples and generalizes better.

In order to utilize the mean and variance information into the
theoretical analysis, we design a new margin loss, which uses r to
djust the mean of margin and θ to adjust the variance of margin.
or any parameter r > θ > 0, we can define a (r, θ )-margin

distribution loss function (see Fig. 1(b)), which penalizes h with
a cost of 1 when it predicts x with a margin smaller than r − θ ,
ut also penalizes h when it predicts x with a margin larger than
+θ . The margin distribution bound is presented in terms of this
oss function, which is formally defined as follows.

efinition 1 (Expected Margin Distribution Loss Function). For any
> θ > 0, the (r, θ )-margin loss is the function Lr,θ (·) defined

for all h ∈ H as:

Lr,θ (h) = Pr
D

[γh(x, y) ≤ r − θ ] + Pr
D

[γh(x, y) > r + θ ] . (9)

Intuitively, our (r, θ )-margin distribution loss function looks
or a classifier h which forces as many data points as possible
nto the zero-loss band (r − θ ≤ γh(x, y) < r + θ ). Therefore, we
et r ≃ ED[γh(x, y)], θ2

≃ VarD[γh(x, y)], which implies that the
xpected margin is larger than the standard deviation. Actually,
just need to be a second-order statistic, so we can re-scale

2
= a · VarD[γh(x, y)] to satisfy r > θ . In this way, the (r, θ )-

argin distribution loss is a surrogate loss function. In particular,
or r = θ and θ → ∞, the zero-loss band is the positive area
γh(x, y) > 0) and Lr,θ corresponds to the 0–1 loss L0. Let L̂r,θ (fw)
e the empirical estimate of the expected margin distribution
oss. So we also denote the expected risk and the empirical risk
s L0(fw) and L̂0(fw), which are bounded between 0 and 1.
We begin with bounding the change of output caused by the

oise on the classifier u with the noise-sensitivity parameters and
he statistics of margin distribution:

emma 3. Let fw : X → Rk be a d-layer network. For any d >

, and vec({U i}
d
i=1) = (U1,U2, . . . ,U d) is a vector of perturba-

ion parameters with U i = βi∥W i∥F , and β = vec({βi}
d
i=1) =

β1, β2, . . . ,βd) is a vector of random vectors with E[ββ⊤
] = σ 2I ,

he change of the output of the network can be bounded with a fixed
robability (δ = 1/2):

ax
x∈X

|fw+u(x) − fw(x)|22 ≤ O

(
d∑ dα2c2σ 2(r + θ )2

µ2µ2

)
. (10)
i=1 i i→
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Fig. 2. Illustration of the relationship between margin distribution and allowable perturbation.
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The result shows that the perturbation caused by u increases
ith the variance σ 2 is related to the outermost edge of margin

distribution r + θ , that is, the right green dotted line in Fig. 1(b).
The next Lemma shows that we can bound the generalization gap
through a Kullback–Leibler divergence term, if we can guarantee
that the perturbation caused by u is smaller than r−θ

8 with a
onstant probability. Therefore, the allowable value of σ 2 under
the (r, θ )-margin distribution assumption is consistent with the
intuitive understanding (see Fig. 2), i.e., σ 2

∝
r−θ
r+θ

=
1−λ
1+λ

, where
= θ/r ∈ (0, 1). When the margin distribution is more compact

smaller λ), the larger noise σ 2 can be allowed, that is, it is not
asy to cause misclassification. When the margin distribution is
ore loose (larger λ), even a small noise have misclassification

isk.

emma 4. Let fw : X → Rk be any predictor with parameters w,
nd P be any distribution on the parameters that is independent of
he training data. Then, for any r > θ > 0, δ > 0, with probability
t least 1−δ over the training set of size m, for any w, and any ran-
om perturbation u s.t. Pru

[
maxx∈X |fw+u(x) − fw(x)|2 < r−θ

8

]
≥

1
2 , we have:

L0(fw) ≤ L̂r,θ (fw) + 4

√
DKL(w + u||P) + ln 6m

δ

m − 1
. (11)

The detailed proof is presented in Section 5.2. This Lemma
mproves the result of Neyshabur et al. (2018, Lemma 1), espe-
ially using two parameters θ, r to describe the entire margin
istribution instead of using one parameter γ to describe the
inimum margin. Based on this result, we can derive the fol-

owing generalization bound, with proof deferred to Section 5.3
howing that the Kullback–Leibler divergence term is inversely
roportional to σ 2.

Theorem 5. For any d, ρ > 0, let fw : X → Rk be a d-layer
eed-forward network with ReLU activation. Then, for any δ > 0,
with probability ≥ 1− δ over a training set of size m, for any w, we
have:

L0(fw) ≤ L̂r,θ (fw) + O

⎛⎜⎜⎜⎜⎝
√( 1+λ

1−λ

)2 (∑d
i=1

dα2c2

µ2
i µ2

i→

)
+ ln 6m

δ

m

⎞⎟⎟⎟⎟⎠ . (12)

here the margin ratio is defined by λ = θ/r.

We prove an upper bound on generalization gap related to
he margin ratio term, where λ is a parameter denoting the ratio
f the margin standard deviation θ to the expected margin r
ver the underlying distribution, and the error-resilience term
elies on the noise sensitivity (Arora et al., 2018) quantified
y µ , µ , c, α (see Assumptions 1, 2, 4 and 5). Theorem 5
i i→

5

Fig. 3. Comparing our bound and Arora et al. (2018) to empirical generalization
error during training. All bounds are rescaled to be within the same range as
the generalization error together.

states that the entire margin distribution has much leverage in
generalization performance rather than the minimum margin.
Specifically, restricting a smaller λ (larger r and smaller θ ) can
ffectively control the capacity of models, so as to reduce the risk
f overfitting. It inspires us that optimizing margin distribution
an get better generalization performance than the traditional
inimum margin maximization algorithm.

iscussion. The main difference between Arora et al. (2018) and
ur paper: Arora et al. (2018) proved that the generalization
erformance of deep neural network is related to the sparsity of
ts parameters, focusing on how to compress the parameters of
he trained model. Our paper studies the relationship between
NN generalization performance and margin distribution under
he condition that DNN parameters is sparsity, focusing on op-
imizing margin distribution during training. Fig. 3 shows that
he improvement of our bound relative to Arora et al. (2018) (the
haded part in the figure) is because the margin ratio will grad-
ally decrease during the training process. The main difference
etween Jiang et al. (2019) and our paper: Jiang et al. (2019)
onjectured that the generalization performance of DNN may
e related to the interval distribution. The correlation between
eneralization and R2 (Glantz & Slinker, 2001) is calculated ex-
erimentally, and no theoretical proof is given. Our paper proves
heoretically that the generalization performance of DNNs can be
ound by the margin ratio and gives the improved algorithm.

. Proofs

In this section, we provide the detailed proofs for the main
heorem and lemmas. First, we present a useful lemma as follows:
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emma 6. Let Q be a probability distribution over the reals.
For any random variable v, v1, v2, . . . , vm′ ∼ Q identically and
ndependently (i.i.d.), we have

Pr
∼Q

[
v ≥ max

v1,...,vm′∼Q
{v1, v2, . . . , vm′}

]
=

1
m′ + 1

. (13)

roof of Lemma 6. Let the Cumulative Distribution Function
CDF) and Probability Density Function (PDF) of random variable
be F (x) and f (x), and we denote the maximum of a set of m′

random variables by v(m′)
= maxv1,...,vm′∼Q{v1, v2, . . . , vm′}. Then

Pr
v1,...,vm′∼Q

[
v(m′)

≤ x
]

(14)

Pr
v1,...,vm′∼Q

[(v1 ≤ x) ∧ · · · ∧ (vm′ ≤ x)] (15)

Pr
Q

[v1 ≤ x] × . . . × Pr
Q

[vm′ ≤ x] = Fm′

(x). (16)

In other word, the CDF and PDF of the minimum v(m′) are
Fm′

(x) and m′Fm′
−1(x)f (x). Then we can use the minimum value

of the sample’s set to bound the random variable v with a prob-
ability m′

m′+1 , which converges to 1 with a rate O(1/m′):

Pr
v,v1,...,vm′∼Q

[
v ≤ v(m′)

]
(17)

Pr
v,v1,...,vm′∼Q

[
v − v(m′)

≤ 0
]

(18)∫∫
x≤y

f (x)Fm′
−1(y)f (y) dx dy (19)∫

+∞

−∞

m′Fm′
−1(y)f (y) dy

∫ y

−∞

f (x) dx (20)∫
+∞

−∞

m′Fm′

(y)f (y) dy (21)

m′Fm′
+1(y) |

+∞

−∞
−

∫
+∞

−∞

m′2Fm′

(y)f (y) dy. (22)

According to Eqs. (21) and (22), we have

Pr
,v1,...,vm′∼Q

[
v ≤ v(m′)

]
=

m′

m′ + 1
. □ (23)

.1. Proof of Lemma 3

We begin with a lemma as follows:

emma 7. For any layer i, the point-wise compressibility of the
layer-wise parameters can hold with a probability 1 −

1
m′+1 over

x ∈ D as follows:

µi∥W i∥F∥φ(xi−1)∥2 ≤ ∥xi∥2, (24)

µi,j∥J
i,j
xi ∥F∥φ(xi−1)∥2 ≤ ∥xj∥2, (25)

∥M i,j(xi + η) − J i,jxi (x
i
+ η)∥ ≤

∥η∥∥xj∥
ρδ∥xi∥

(26)

c∥φ(xi)∥2 ≥ ∥xi∥2, (27)

α∥γh(x, y)∥2 ≥ ∥xd∥2, (28)

where m′ is the size of the validation set.

Proof of Lemma 7. According the independence between S and
S ′, we can regard the noise-sensitivity parameters 1

µi
, 1

µi,j
, c and

as random variables over reals relying on the randomness
f variable x ∈ S ′. Then, the cushion parameters defined in
ssumptions 1–5 can be interpreted as choosing the maximum
f multiple independent samples. We first prove Lemma 6 on the
6

ail of a random variable v ∼ Q by choosing the maximum of
ultiple independent samples of the random variable. Specifi-
ally, using the following simple lemma based on the distribution
f the maximum, we can guarantee the point-wise compressibility
f the learned parameters over the underlying data distribution
with a high probability by calculating the maximum of the

mpirical dataset, i.e., 1
µi

, 1
µi,j

, c and α. □

Proof of Lemma 3. First, we need to bound the perturbation
of linear operator caused by injecting a scaled Gaussian noise
U = β∥W∥F ,E[ββ⊤

] = σ I . For any fixed vectors a, b, we have

Eβ∥a⊤(W + U )b − a⊤Wb∥2 = Eβ∥b∥2∥a⊤UU⊤a∥2

= Eβ∥W∥F∥b∥2∥a⊤ββ⊤a∥2 (29)

= σ∥W∥F∥a∥2∥b∥2. (30)

ccording the Markov inequality, we have

Pr
β

[
∥a⊤(W + U )b − a⊤Wb∥2 ≥ σ

√
d/

√
δ∥W∥F∥a∥2∥b∥2

]
≤

σ 2
∥W∥

2
F∥a∥

2
2∥b∥

2
2

dσ 2/δ∥W∥
2
F∥a∥

2
2∥b∥

2
2

=
δ

d
. (31)

Now, we will bound the perturbation of the d-layer deep
ets by induction. For any layer i ≥ 0, let xj be the output at
ayer j with original net and x̂ji be the output at layer j if the
eights W 1, . . . ,W i in the first layers are replaced with W 1 +

1, . . . ,W i + U i. The induction hypothesis is then following:
Consider any 0 < ϵ ≤ 1, the following is true with probability

−
iδ
d over W 1 + U1, . . . ,W i + U i for any j ≥ i:

x̂ji − xj∥2
2 ≤

i∑
l=1

c2dσ 2

δµ2
l µ

2
l→

∥xj∥2
2. (32)

For the base case i = 0, since we are not perturbing the
input, the inequality is trivial. Now assuming that the induction
hypothesis is true for i − 1, we consider what happens at layer i.

x̂ji − xj∥2
2 = ∥(x̂ji − x̂ji−1) + (x̂ji−1 − xj)∥2

2

≤ 2∥(x̂ji − x̂ji−1)∥
2
2 + 2∥x̂ji−1 − xj∥2

2 (33)

The second term in Eq. (33) can be bounded by
∑i−1

l=1
c2σ2

µ2
l µ2

l→
∥xj∥2

2 by induction hypothesis. Therefore, it is enough to show
that the first term in Eq. (33) is bounded by c2σ2

µ2
i µ2

i→
∥xj∥2

2. We de-
compose the error into two error terms one of which corresponds
to the error propagation through the network if activation were
fixed and the other one is the error caused by change in the
activations:

∥(x̂ji − x̂ji−1)∥ (34)

= ∥M i,j((W i + U i)φ(x̂
i−1)) − M i,j(W iφ(x̂

i−1))∥ (35)

=∥ M i,j((W i + U i)φ(x̂
i−1)) − M i,j(W iφ(x̂

i−1))

+ J i,jxi (U
iφ(x̂i−1)) − J i,jxi (U

iφ(x̂i−1)) ∥ (36)

≤∥ J i,jxi (U
iφ(x̂i−1))∥ + ∥M i,j((W i + U i)φ(x̂

i−1))

− M i,j(W iφ(x̂
i−1)) − J i,jxi (U

iφ(x̂i−1)) ∥ . (37)

The first term in Eq. (37) is bounded by:

∥J i,jxi U
iφ(x̂i−1)∥2 (38)

≤ (
√
dσ/

√
6δ)∥J i,jxi ∥2∥W i∥F∥φ(x̂

i−1)∥2 (39)

≤ (
√
dσ/

√
6δ)∥J i,jxi ∥2∥W i∥F∥x̂

i−1
∥2 (40)

≤ (
√
dσ/

√
3δ)∥J i,j∥ ∥W ∥ ∥xi−1

∥ (41)
xi 2 i F 2
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≤ (c
√
dσ/

√
3δ)∥J i,jxi ∥2∥W i∥F∥φ(xi−1)∥2 (42)

≤ (c
√
dσ/

√
3δµi)∥J

i,j
xi ∥2∥W iφ(xi−1)∥2 (43)

≤ (c
√
dσ/

√
3δµiµi→)∥xj∥2. (44)

here Eq. (38) is bounded by Eq. (31), Eq. (39) is bounded by
ipschitzness of the activation function, Eq. (40) is bounded by
nductive hypothesis, Eq. (41) is bounded by activation contrac-
ion, Eq. (42) is bounded by layer cushion, and Eq. (44) is bounded
y interlayer cushion.
The second term in Eq. (37) can be bounded as:

∥ M i,j((W i + U i)φ(x̂
i−1)) − M i,j(W iφ(x̂

i−1))

− J i,jxi (U
iφ(x̂i−1)) ∥2 (45)

=∥ (M i,j
− J i,jxi )((W i + U i)φ(x̂

i−1))

− (M i,j
− J i,jxi )(W iφ(x̂

i−1)) ∥2 (46)

= ∥(M i,j
− J i,jxi )((W i + U i)φ(x̂

i−1))∥2

+ ∥(M i,j
− J i,jxi )(W iφ(x̂

i−1))∥2. (47)

Both terms in Eq. (47) can be bounded using Assumption 3.
y notations we find W iφ(x̂i−1) = x̂ii−1. By induction hypothesis,
e have that ∥W iφ(x̂i−1) − xi∥2

2 ≤
∑i−1

l=1
c2dσ2

δµ2
l µ2

l→
∥xi∥2

2. Now by

nterlayer smoothness property, ∥(M i,j
− J i,jxi )(W

iφ(x̂i−1))∥2
2 ≤∑i−1

l=1
c2dσ2

δµ2
l µ2

l→
∥xj∥

ρδ
≤ (

∑i−1
l=1

c2dσ2

δµ2
l µ2

l→
)∥xj∥2

2/(3d) ≃
i−1
3d

c2dσ2

δµ2
i µ2

i→
∥xj∥2

2.

imilar to this term, ∥(M i,j
− J i,jxi )((W

i
+ U i)φ(x̂

i−1))∥ ≤ (
∑i

l=1
c2dσ2

δµ2
l µ2

l→
)∥xj∥/(3d) ≃

i
3d

c2dσ2

δµ2
i µ2

i→
∥xj∥2

2. Putting everything together

ompletes the induction with probability at least 1 − δ (if i = d).
Instead of assuming that the input domain X is bounded by a

constant B, we assume that the input boundary is relative to the
expected value which implies the data-distribution information:
maxx ∥xd∥2 ≤ O(ED∥xd∥2). According to the margin contraction
property, we can use the first- and second-statistics of the margin
in the last layer ED[γh(x, y)] = r,VarD[γh(x, y)] = θ2 to bound
the perturbation instead of the worst situation:

max
x

∥xd∥2
2 ≤ O(ED∥xd∥2

2) ≤ O(α2ED∥γh(x, y)∥2
2) (48)

≤ O(α2(r2 + θ2)) ≤ O(α2 (r + θ)2) (49)

Connecting these two inequalities we prove that the equality
holds with a probability at least 1/2:

|fw+u(x) − fw(x)|22 ≤ O

(
d∑

i=1

dα2c2(r + θ )2σ 2

µ2
i µ

2
i→

)
. □ (50)

.2. Proof of Lemma 4

roof of Lemma 4. Let w′
= w + u, Let Sw be the set of

perturbations with the following property:

Sw ⊆

{
w′

⏐⏐⏐⏐max
x∈X

|fw′ (x) − fw(x)|2 <
r − θ

8
√

ρ

}
, (51)

hen we will have maxx∈X |fw′ (x) − fw(x)|∞ <
√

ρ maxx∈X
fw′ (x) − fw(x)|2 < r−θ

8 .
Let q be the probability density function over the parameters

′. We construct a new distribution Q̃ over predictors fw̃ where
˜ is restricted to Sw with the probability density function:

˜(w̃) =
1
{
q(w̃) w̃ ∈ Sw (52)
Z 0 otherwise

7

According to the lemma assumption, we have Z = P
[
w′

∈ Sw

]
≥

1
2 . Therefore, we can bound the change of the margins for any
nstance:

max
,j∈[k],x∈X

|(|fw̃(x)[i] − fw̃(x)[j]|) − (|fw(x)[i] − fw(x)[j]|)| <
r − θ

2
(53)

ere we define a perturbed loss function as:

′

r,θ (h) = Pr
D

[
γh(x, y) ≤

r − θ

2

]
+ Pr

D

[
γh(x, y) > r + θ +

r − θ

2

]
.

(54)

We can get the following:

L0 (fw) ≤ L′

r,θ (fw̃) (55)
′

r,θ (fw̃) ≤ L̂r,θ (fw) (56)

Finally, using the proof of Neyshabur et al. (2018, Lemma 1), with
probability 1 − δ over the training set we have:

L0 (fw) ≤ Ew̃

[
L′

r,θ (fw̃)
]

(57)

≤ Ew̃

[̂
L′

r,θ (fw̃)
]
+ 2

√
2
(
DKL(w̃ ∥ P) + ln 2m

δ

)
m − 1

(58)

≤ L̂r,θ (fw) + 2

√
2
(
DKL(w̃ ∥ P) + ln 2m

δ

)
m − 1

(59)

≤ L̂r,θ (fw) + 4

√
DKL (w′ ∥ P) + ln 6m

δ

m − 1
□ (60)

5.3. Proof of Theorem 5

Proof of Theorem 5. Since Lemma 3 proves that the perturbation
caused by random vector u is bounded by a term relative to the
variance σ , we can preset the value of σ to make the random
perturbation satisfy the condition for Lemma 4. Bounding the
Kullback–Leibler divergence term by ∥w∥

2
2/∥u∥

2
2 in PAC-Bayesian

theorem, we can attain the generalization bound based on a
specific margin distribution.

The proof involves chiefly two steps. In the first step we bound
the maximum value of perturbation of parameters to satisfy
the condition that the change of output restricted by hyper-
parameters of margin r and θ , using Lemma 3. In the second step
we prove the final margin generalization bound through Lemma 4
with the value of Kullback–Leibler divergence term calculated
based on the bound in the first step.

|fw+u(x) − fw(x)|22 ≤ O

(
d∑

i=1

dα2c2(r + θ )2σ 2

µ2
i µ

2
i→

)

= (
r − θ

8
√

ρ
)2

We can derive σ =
r−θ

8αcd
√

ρ(r+θ )
√∑d

i=1
1

µ2
i µ2

i→

from the above in-

equality. Naturally, we can calculate the Kullback–Leibler di-
vergence in Lemma 3 with the chosen distributions for P ∼

(0, σ 2I).

KL(w + u ∥ P) ≤
|w|

2

2|w|
2
|ηη⊤|

2 =
1

2σ 2 (61)

≤ O

(
(r + θ )2

(r − θ )2

d∑
i=1

dρα2c2

µ2
i µ

2
i→

)
(62)
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ut it in Lemma 4 and let λ = θ/r , with probability at least 1− δ
and for all w such that, we have:

L0(h) ≤ L̂r,θ (h) + O

⎛⎜⎜⎝
√ (1+λ)2

(1−λ)2
∑d

i=1
dρα2c2

µ2
i µ2

i→
+ ln dm

δ

m

⎞⎟⎟⎠ . □ (63)

. Optimizing margin distribution measure

The generalization theory shows the importance of optimizing
he margin distribution ratio λ. The result inspires us to find a
argin distribution band (r − θ ≤ γh(x, y) < r + θ ) containing
s many training samples as possible to minimize the empirical
stimate loss L̂r,θ , but also a ratio λ = θ/r as small as possible
o minimize the generalization gap L0(h) − L̂r,θ (h). This type of
oss function was first proposed by Zhang and Zhou (2019) to
ptimize the first- and second-order statistics of margin distri-
ution. We formulate a convex margin distribution loss function
or DNNs:

efinition 2 (Convex Margin Distribution Loss Function). For a
labeled sample (x, y) ∈ D, we denote its margin by γh which
s defined as Eq. (1). We define the margin distribution loss for
etworks (mdNet loss) as:

r,θ,η(h(x), y) =

⎧⎪⎨⎪⎩
(r−θ−γh)2

(r−θ )2
γh ≤ r − θ

0 r − θ < γh ≤ r + θ
η(r+θ−γh)2

(r+θ )2
γh > r + θ,

(64)

here r is the margin mean parameter, θ is the margin variance
arameter and η is a parameter to trade off two different kinds of
eviation (keeping the balance on both sides of the margin mean).
ig. 1(c) shows the shape of this convex loss function.

Eq. (64) will produce a square loss when the margin satisfies
h ≤ r − θ or γh ≥ r + θ . Therefore, our margin loss function
ill force the zero-loss band to contain as many sample points
s possible. The ratio of hyper-parameters λ = θ/r can control

the capacity measure, which implies our measure is dependent to
our specific learning algorithm (loss function with specific hyper-
parameters). Since our loss function aims at finding a decision
boundary which is determined by the entire margin distribution,
instead of the minority samples that have minimum margins, we
name our method as margin distribution Networks (mdNet).

. Experiments

In Section 7.1, we introduce the configuration of datasets and
odels. In Section 7.2, we design an ablation experiment to
erify the superiority of our method. In Section 7.3, we show the
orrelation between separability of representations and margin
atio via visualization. In Section 7.4, we design experiments
o confirm that our method can control the capacity of deep
ets. In Section 7.5, we discuss the influence of the different
yper-parameters on the test accuracy.

.1. Configuration

Since our method only works on the loss function part of
eep models and does not change the architecture of deep neural
etworks, we can verify the effectiveness of mdNet on the classic
NNs (convolutional neural networks) and image classification
enchmark datasets. We consider the following architectures and
atasets: a LeNet architecture for MNIST dataset (LeCun, Bottou,
engio, & Haffner, 1998), an AlexNet architecture (Krizhevsky,
utskever, & Hinton, 2012) for CIFAR-10 dataset (Krizhevsky,
8

2009) and a ResNet-18 architecture (He, Zhang, Ren, & Sun, 2016)
for ImageNet dataset (Russakovsky et al., 2015). From the litera-
ture, these datasets come pre-divided into training and testing
sets, therefore in our experiments, we use them in their original
format. The loss functions used for comparison in the experi-
ments are as follows: cross-entropy loss (abbr., xent), hinge loss
and soft hinge loss. Hinge loss (Cortes & Vapnik, 1995) and soft
hinge loss (Liu et al., 2016) are loss functions specially proposed
to optimize the minimum margin, both of them are inspired the
traditional margin theory.

As for details about the architecture, we remove the weight
decay (Krogh & Hertz, 1992), dropout (Srivastava et al., 2014)
and batch normalization (BN) (Ioffe & Szegedy, 2015) from all the
models, because the batch normalization operation and weight
decay will shift the data distribution. The notable dropout tech-
nique, in which some neurons are dropped from the DNNs in each
iteration, can also be viewed as an ensemble method composed of
different neural networks, with different dropped neurons (Baldi
& Sadowski, 2013). It is hard to analyze the influence of the
ensemble structure on the margin distribution, so we remove
this technique in these architectures in the experiments except
to understand the contribution of the components to the whole
models in the ablation study.

For special hyper-parameters, including the expected margin
parameter and margin variance parameter for mdNet loss model,
and margin parameter for hinge loss model, we perform hyper-
parameter search. We hold out 5000 samples of the training set
as a validation set, and use the remaining samples to train models
with different special hyper-parameters values on all datasets.
As for the common hyper-parameters, such as learning rate and
momentum, we set them as the default commonly used values
in PyTorch (Paszke et al., 2019) for all the models. We chose
batch stochastic gradient descent as the optimizer. We run all the
experiments on four K80 GPU machines. As for the influence of
the different hyper-parameters on the test accuracy, we discuss
it empirically in Section 7.5.

7.2. Ablation study

Since the optimization algorithm proposed in this paper only
focuses on the improvement of loss function, we design an abla-
tion experiment to study the performance of our proposed mdnet
method and the traditional benchmark loss functions under dif-
ferent regularizations in Table 1. The mdNet loss outperforms the
others consistently across different situations, no matter whether
dropout, batch normalization or the entire dataset are used or not.
The experiments are evaluated on three MNIST (LeNet), CIFAR-
10 (AlexNet) and ImageNet (ResNet-18) datasets. Specifically,
when the amount of training samples is small, the advantage of
mdNet loss is significant. Moreover, the mdNet loss function can
cooperate with both batch normalization and dropout, achieving
the best performance in Table 1, which is highlighted in bold red
text. Unlike dropout and batch normalization which lack solid
theoretical grounds, the mdNet loss function is inspired by the
margin distribution bound in Theorem 5, which guides us to find
a suitable margin ratio to restrict the model capacity and alleviate
the overfitting problem efficiently.

7.3. Feature visualization

In this experiment, we use t-SNE method to visualize the
learned representations on the last hidden layer. Figs. 4(a), 4(b)
and 4(c) plot the 2D t-SNE (van der Maaten & Hinton, 2008)
embedding image on limited datasets, including MNIST (LeNet),
CIFAR-10 (AlexNet) and 10-class ImageNet (ResNet-18). Consis-

tently, we can find that the result of mdNet loss model is better
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Fig. 4. The quality of feature representations generated by different models on the MNIST, CIFAR-10 and ImageNet datasets.
han all the others, the distribution of samples which have the
ame label are more compact. To quantify the degree of separa-
ility of data distribution, we perform a variance decomposition
n the data in the embedding space. By comparing the ratio of
nter-class variance SE to intra-class variance SA in Figs. 4(d), 4(e)
nd 4(f), we see that the mdNet loss always attain the most
eparable distribution among these four loss functions. Moreover,
he visualization result is consistent with the margin distribution
atio 1/λ of these four models, which means that optimizing
9

the margin distribution (searching an appropriate margin ratio
λ) is helpful to attain a good learned representation space. This
representation features space can further alleviate the overfitting
problem of deep learning, we verify empirically that a network
trained with mdNet loss shows stronger clustering. Specially,
Figs. 4(d), 4(e) and 4(f) show the relationship between the margin
ratio and test error. Moreover, Fig. 5 plots the test error of mdNet
and the margin ratio across the different epochs. We can see
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Table 1
Test accuracy of LeNet on MNIST, AlexNet on CIFAR-10 and ResNet-18 on ImageNet datasets with different regularization methods and different fractions of training
set. The best accuracy on each training dataset is highlighted in bold red type. The bold black text indicates the better accuracy between the two losses with the
same regularization.
MNSIT

Accuracy(%) xent Hinge Soft hinge mdNet

Batch normalization

100%_Dropout 99.095 ± 0.083 98.593 ± 0.164 99.148 ± 0.039 99.161 ± 0.073
100%_Non_Dropout 98.384 ± 0.072 97.571 ± 0.178 98.475 ± 0.064 98.837 ± 0.091
5%_Dropout 97.001 ± 0.131 96.527 ± 0.219 97.112 ± 0.092 97.268 ± 0.113
5%_Non_Dropout 83.364 ± 0.452 83.292 ± 0.721 83.749 ± 0.273 84.483 ± 0.348

Non batch normalization

100%_Dropout 98.228 ± 0.079 98.029 ± 0.184 98.271 ± 0.055 98.342 ± 0.069
100%_Non_Dropout 91.728 ± 0.117 90.237 ± 0.318 91.029 ± 0.098 92.274 ± 0.121
5%_Dropout 77.842 ± 0.489 76.938 ± 0.827 77.727 ± 0.411 78.173 ± 0.619
5%_Non_Dropout 58.023 ± 0.951 57.822 ± 1.280 59.384 ± 0.827 61.379 ± 0.588
CIFAR-10

Accuracy(%) xent Hinge Soft hinge mdNet

Batch normalization

100%_Dropout 85.782 ± 0.198 84.234 ± 0.748 86.744 ± 0.294 87.644 ± 0.151
100%_Non_Dropout 81.491 ± 0.143 80.938 ± 0.812 86.032 ± 0.298 86.233 ± 0.244
5%_Dropout 61.955 ± 1.945 58.363 ± 2.450 59.441 ± 1.316 67.636 ± 1.633
5%_Non_Dropout 57.753 ± 2.228 54.289 ± 3.482 56.839 ± 2.318 64.173 ± 1.982

Non batch normalization

100%_Dropout 83.517 ± 0.322 82.153 ± 1.236 81.961 ± 0.293 84.643 ± 0.255
100%_Non_Dropout 72.223 ± 1.284 69.379 ± 2.907 75.267 ± 1.027 76.793 ± 1.279
5%_Dropout 50.747 ± 3.735 42.739 ± 6.763 52.847 ± 1.823 58.739 ± 1.348
5%_Non_Dropout 36.293 ± 4.872 30.984 ± 7.736 43.265 ± 4.263 47.056 ± 3.927
ImageNet

Accuracy(%) xent Hinge Soft hinge mdNet

Batch normalization

100%_Dropout 70.238 ± 1.221 69.782 ± 1.933 70.284 ± 1.022 70.758 ± 1.014
100%_Non_Dropout 68.484 ± 1.265 67.918 ± 2.166 68.83 ± 1.151 69.447 ± 1.124
5‰_Dropout 60.176 ± 2.045 57.475 ± 2.023 61.379 ± 1.053 65.080 ± 2.373
5‰_Non_Dropout 59.574 ± 2.747 56.621 ± 2.253 60.068 ± 1.773 63.529 ± 2.012

Non batch normalization

100%_Dropout 66.924 ± 1.552 67.387 ± 1.764 67.462 ± 1.017 68.655 ± 1.732
100%_Non_Dropout 64.481 ± 2.183 61.820 ± 2.947 64.334 ± 2.367 65.838 ± 2.481
5‰_Dropout 54.961 ± 3.382 52.543 ± 3.722 55.757 ± 2.357 58.774 ± 3.841
5‰_Non_Dropout 47.374 ± 3.265 45.741 ± 5.349 48.798 ± 3.392 53.727 ± 4.235
Fig. 5. Test error and margin ratio across epochs on mdNet models for MNIST, CIFAR-10 and ImageNet datasets.
hat more compact margin distribution gets better prediction per-

ormance across different models and epochs. This exhibits that

ptimizing margin distribution can indeed improve the learning

bility of deep nets.
10
7.4. Controlling capacity

The first two experiments have demonstrated that our mdNet
can outperform other classical loss functions and our method can
learn a more separable feature representation, as the correspond-
ing margin ratio is also smaller. However, it leads to the last
question:
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Fig. 6. Compare the convergence rate of generalization gap with the increase of training samples under different loss functions on MNIST, CIFAR-10 and ImageNet
datasets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. The test accuracy varying with two hyper-parameter r and θ on MNIST, CIFAR-10 and ImageNet datasets. The logarithm of ratio ln(1/λ) = ln(r/θ ) is the
lower surface with rainbow colors and the test accuracy is the upper surface with warm-cool colors. The test accuracy is rescaled to be within the same range as
the ratio. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Can smaller margin ratio reduce the capacity of models and
accelerate the convergence of generalization gap?

Let us go back to the theoretical result obtained by Theorem 5.
The generalization gap of the model is bounded by Λλ,w/

√
m,

here the margin distribution measure Λλ,w ∝
1+λ
1−λ

determines
he worse case of generalization gap when the number of samples
re equal:

eneralization Gap ≤ O(
Λλ,w
√
m

). (65)

Therefore, we design experiments to compare the empiri-
al value of generalization gap with the increase of training
amples under different loss functions. In Fig. 6, it shows that
he red dotted line representing the convergence curve of our
ethod always converges faster than the other lines under dif-

erent datasets and models. It also demonstrates that our method
an effectively control the capacity of the model by optimizing
he margin distribution ratio, so that the trained model has better
eneralization performance.
Given a fixed number of samples m, we find that the worst

ase of generalization gap is proportional to the model capacity.
hen m is large enough, the scale factor 1/

√
m will be close

o 0, and the difference of sample complexity is not significant.
he advantage of optimizing margin distribution is relatively
ignificant when

√
m is relatively small. Therefore, in the right

of Fig. 6 (the ImageNet experiment), we specially truncate the
most significant result of convergence rate (form 0.1‰ to 5‰
of training set), which shows that optimizing margin distribution
can control the capacity of the model even on such a complex
dataset.
11
7.5. Influence of the hyper-parameters

Fig. 7 plots the 3D surface figure for the test accuracy on
the MNIST, CIFAR-10 and ImageNet datasets varying with two
hyper-parameter r and θ . It shows that the ratio 1/λ = r/θ (the
lower surface with rainbow colors) increases with r increasing
and θ decreasing. As for the test accuracy (the upper surface
with warm-cool colors), we find that its trend is consistent with
the ratio 1/λ. Therefore, the influence of the hyper-parameters
demonstrates that our theoretical result. Within a certain range,
getting a smaller ratio λ through specific optimization (the mar-
gin distribution loss function) will effectively reduce the size of
the hypothesis set for deep nets (returned by the specific algo-
rithm), so as to improve the generalization ability of the learned
model. In other words, the test accuracy changes consistently
with the ratio of hyper-parameters (an estimation of the ratio of
margin distribution). The parameter η to trade off two different
kinds of deviation (keep the balance on both sides of the margin
mean) is always fixed to 0.1 in practice.

8. Conclusion

This paper proves generalization bound for deep neural net-
works by considering the margin distribution at the last layer
instead of the minimum margin. The theoretical result inspires
us to utilize a margin distribution loss function to improve the
generalization performance of neural networks. Experimental re-
sults show that our method can effectively control the model
capacity by optimizing the margin distribution measure, so that
the trained model learns more separable representations and
has better generalization performance. In future work, we will
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