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Abstract

Decision tree learning algorithms such as CART
are generally based on heuristics that maximizes
the impurity gain greedily. Though these al-
gorithms are practically successful, theoretical
properties such as consistency are far from clear.
In this paper, we discover that the most serious
obstacle encumbering consistency analysis for
decision tree learning algorithms lies in the fact
that the worst-case impurity gain, i.e., the core
heuristics for tree splitting, can be zero. Based
on this recognition, we present a new algorithm,
named Grid Classification And Regression Tree
(GridCART), with a provable consistency rate
O(n−1/(d+2)), which is the first consistency rate
proved for heuristic tree learning algorithms.

1 Introduction

Decision trees are among the most popular methods in
machine learning and data mining. The widely used
CART [Breiman et al., 1984] is a heuristic tree-based learn-
ing algorithm and is usually selected to be a base learner
in ensemble learning such as the popular random for-
est [Breiman, 2001], gradient boosting decision tree [Chen
and Guestrin, 2016; Ke et al., 2017] and deep forest [Zhou
and Feng, 2019]. At each step, CART chooses a dimension
and a cut point to maximize the impurity gain, and then
splits every leaf t into two children t ∩ {x | x(k) < s}
and t ∩ {x | x(k) ≥ s}. The process will continue re-
cursively until all the leaves contain samples with the same
label. The algorithm is highly heuristic, but it succeeds in
various types of tasks. Thus, it is crucial to understand the
mysteries behind the great success.

Consistency describes whether a learning algorithm can
eventually learn the optimal classifier from a large amount
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of training data with high probability [Devroye et al.,
1997], and thus a successful algorithm should be provably
consistent. Nevertheless, despite having been proposed for
more than 30 years [Breiman et al., 1984], whether this
type of heuristic algorithm for tree learning is generally
consistent still remains mysterious. There have been a lot
of efforts on this issue. Devroye et al. [1997], Biau et al.
[2008], and Gao and Zhou [2020] showed the consistency
of pure random trees, which splits every leaf independently
on samples, whereas the label-dependent analysis of tree
generating is instead the most challenging. Scornet et al.
[2015] was the first to analyze the label-dependent node
splitting and showed that CART is consistent under the
assumptions of an additive target function and uniformly
randomly distributing features. Klusowski [2021] elimi-
nated all the assumptions on the feature distribution and
presented that CART is consistent in the high dimension
for additive target functions. However, we usually have no
side information about the target function when one prac-
tically uses heuristic algorithms in real-world tasks. Thus,
these assumptions are still far from mild.

In this paper, we revisit this issue by studying a new im-
purity measure, called Influence [Kahn et al., 1988]. Our
study point is from some seminal works [Blanc et al.,
2020b; Fiat and Pechyony, 2004], in which they showed
the possibility that using Influence as the impurity mea-
sure contributes to the convergence of error, which is a
key ingredient for consistency without any assumptions on
the target function. Nevertheless, previous studies related
to Influence cannot give consideration to both consistency
and practiced effectiveness, since an Influence oracle is re-
quired for tree generating. We bridge this gap by proposing
GridCART, which not only can run practically but also is
consistent without assumptions on the target function. The
contributions of this work are summarized as follows:

1. We develop an in-depth analysis for the consistency
of the heuristic tree learning algorithms and disclose
a serious obstacle that the worst-case gain in impurity
equals to zero when proving consistency.

2. We propose Grid Classification And Regression Tree
(GridCART), whose gain in impurity at each node
splitting can be lower bounded nontrivially, making
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it feasible for the consistency analysis.

3. We present a consistency rateO(n−1/(d+2)) for Grid-
CART, which is the first consistency rate for heuristic
tree learning algorithms, even under weaker assump-
tions for consistency in previous studies.

The rest of this paper is organized as follows. Section 2
reviews some previous works. Section 3 introduces some
essential background knowledge and notations. Section 4
shows the difficulty in proving the convergence of CART.
Section 5 presents the GridCART for binary classification,
its consistency rate, and the time complexity. Section 6 ex-
tends GridCART to more general tasks. Section 7 conduct
simulation experiments to verity the effectiveness of our
theory. Section 8 concludes our work with prospects.

2 Related Work

The history of decision trees dates back to the 1970s. Quin-
lan [1979, 1986] first proposed ID3 for classification in dis-
crete feature space, one of the most popular tree learning al-
gorithms till now. C4.5 for continuous features and CART
for both classification and regression were then proposed
by Quinlan [1993] and Breiman et al. [1984], respectively.
Brodley and Utgoff [1995] thought about multivariate de-
cision trees, which have no restriction on the orthogonal-
ity of the split. Mingers [1989] studied how the choice
of splitting criterion impacted the generalization perfor-
mance. Utgoff [1989] proposed ID5R, which enabled in-
cremental learning for decision trees. Geurts et al. [2006]
introduced the extremely randomized trees whose struc-
tures are independent of the labels of the learning sam-
ples. Tree-based ensemble algorithms such as random for-
est [Breiman, 2001] XGBoost [Chen and Guestrin, 2016],
LightGBM [Ke et al., 2017] and deep forest [Zhou and
Feng, 2019] are also popular and effective methods.

There are great efforts on the consistency of decision trees.
Biau et al. [2008] investigated the connection between de-
cision trees and tree ensemble methods, and they proved
that purely randomized trees are consistent. Gao and Zhou
[2020]; Gao et al. [2022] then presented the convergence
rates of purely randomized trees and a simplified variant
of Breiman’s original CART [Breiman et al., 1984]. The
growth of random trees they analyzed is label-independent,
whereas heuristic algorithms for tree learning are usually
label-dependent. Scornet et al. [2015] showed that CART
is consistent under the assumptions of uniformly distribut-
ing features and additive target functions with Gaussian
noise. Klusowski [2021] provided universal consistency of
CART in the high dimensions assuming the target func-
tion is additive too. It is worth mentioning that Blanc et al.
[2020b]; Fiat and Pechyony [2004] studied a variant of
CART which uses the well-known Influence [Kahn et al.,
1988; O’Donnell, 2014] as the impurity measure. Their

works are mostly related to ours; they studied the training
error of the tree for Boolean functions, while this work fo-
cuses on the consistency rate for real-valued feature spaces.

3 Preliminary

Setting. Let X = [0, 1]d and Y = {0, 1} be the feature
space and label space, respectively. Let p : X → R+ be an
underlying probability density function on X and η(x) =
Pr[Y = 1 | X = x] is the conditional probability function.
We observe data Dn = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)}
drawn i.i.d. with Xi ∼ p and Yi|Xi

∼ Bernoulli(η(Xi)),
where Xi = (X

(1)
i ,X

(2)
i , ...,X

(d)
i ) is a d-dimension vec-

tor. Let R(h) ≜ Pr[h(X) ̸= Y ] denotes the generaliza-
tion error of hypothesis h. We write the Bayes error and
the target function (or Bayes optimal classifier) as R⋆ =
min

h:X→Y
R(h) and f ∈ argmin

h:X→Y
R(h), respectively. As the

underlying distribution p and the target function f are un-
known, we run a learning algorithm and obtain estimators
p̂ and f̂ . For simplicity, we write EX∼p and PrX∼p as Ep

and Prp, respectively, so as to Ep̂ and Prp̂. We say a dis-
tribution p is a product distribution if pX ≡

∏d
k=1 pX(k) ,

i.e., X(1),X(2), . . . ,X(d) are independent on each others.
The convergence rate we analyze in this paper is about the
excess error, which is defined by R(h)− R⋆. If the gener-
alization errors of a sequence of classifiers {hn}∞n=1 con-
verge to the Bayes error or equivalently R(hn)−R⋆ → 0,
as n→∞, we say the sequence {hn}∞n=1 is consistent.

Tree. Denote a tree, that consists of many leaf nodes by
T and let leaves(T ) ≜ {t | t is a leaf of T} be the leaves
set. Every leaf, which is a subset of X , is the intersection
of sets like {x | x(i) < si} or {x | x(j) ≥ sj}, where x is
a d-dimension vector in X and x(k) is its k-th dimension.
For all x ∈ t, the prediction T (x) is decided as follows:

T (x) = argmax
y∈{0,1}

n∑
i=1

I{Yi = y,Xi ∈ t}, x ∈ t .

An impurity function G : [0, 1] → [0, 1] is a strongly con-
cave function that satisfies G(0) = G(1) = 0, G(1/2) = 1,
and G(x) = G(1 − x) for any x. The impurity function
commonly used in famous heuristic algorithms comprises
the entropy, Gini-index, etc. The impurity function pro-
vides an efficient and effective way to build a tree greed-
ily. At each step, the learning algorithm chooses a di-
mension k and a cut point s splitting t into two children
tL ≜ t ∩ {x | x(k) < s} and tR ≜ t ∩ {x | x(k) ≥ s}. The
choices of k and s maximize the impurity gain

pt

[
G(Et)− wtLG(EtL)− wtRG(EtR)

]
,

where pt ≜ Prp̂[X ∈ t] and Et ≜ Ep̂

[
f̂(X) | X ∈ t

]
.

wtL ≜ pt/ptL and wtR ≜ pt/ptR denote the ratios of sam-
ple numbers falling into the two new leaf nodes.
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Our studies work with the following assumptions.

Assumption 1. Assume that η(x) is L-Lipschitz, i.e., ∃L ≥
0, |η(x1)− η(x2)| ≤ L∥x1 − x2∥,∀x1,x2 ∈ X .

Assumption 2. The probability density function is contin-
uously differentiable, i.e., the derivative dpX(k)/dx(k) is a
continuous function for all k.

Assumption 3. The underlying feature distribution is a
product distribution, i.e., p(x) ≡

∏d
k=1 pX(k)(x(k)).

It is worth mentioning that Assumption 1 and 2 are standard
in consistency analysis [Audibert and Tsybakov, 2007].
Assumption 3 looks strong, but it is usually employed by
seminal studies [Brutzkus et al., 2020; Kalai and Teng,
2008; Takimoto and Maruoka, 2003], which is also a re-
laxation of uniform distribution in Scornet et al. [2015].
Notice that our results in this paper do not depend on any
assumptions on the target function used in Blanc et al.
[2020a]; Klusowski [2021]; Scornet et al. [2015].

4 Difference Between CART and InfCART

In this section, we will demonstrate the distinguishing fea-
tures of InfCART as compared to CART. Section 4.1 shows
how to prove a vanishing error, which is one of the main in-
gredients for consistency analysis. Section 4.2 shows that
the zero impurity gain of CART in the worst case leads to
a serious obstacle proving a vanishing error. Section 4.3
introduces Influence-based Classification And Regression
Trees (InfCART), a variant of CART that uses Influence as
the impurity measure, which can always get impurity gain
even under no assumptions on the target function.

4.1 Roadmap for Bounding the Error

For any K ∈ N+, CART builds a tree TK with depth K.
We define the potential CK of TK as follows:

CK ≜
∑

t∈leaves(TK)

pt G(t) ,

where pt follows the definition in Section 3, and G(t) ≜

G
(
Ep̂

[
f̂(X) | X ∈ t

])
is the impurity of leaf t. Here, we

use p̂ instead of p because the true p is unknown. Thus,
CK measures the average impurity of the tree TK . We then
show that the potential CK of TK is an upper bound of the
error R̂(TK) in Proposition 1.

Proposition 1. For any tree TK with depth K and any im-
purity function G, we have R̂(TK) ≤ CK .

One of the main ingredients of proving consistency is to
show that the error converges to zero. Thus, it suffices to
ensure a vanishing potential CK from Proposition 1, which
will be detailed in Section 4.2.

4.2 Conventional Impurity Measures Fail

Let ∆K be the impurity gain for a tree TK growing from
depth K to K + 1 as follows:

∆K ≜ CK − CK+1 .

Then we have the following conclusion.
Proposition 2. There exists a probability density p and a
conditional probability function η : X → [0, 1], such that
∆K = 0 for any possible cut in every leaf.

Proposition 2 shows that in the worst case, the potential
gain ∆K can always be zero, leading to a failure of proving
a vanishing error, as discussed in Section 4.1. The proof
of Proposition 2 is by simply giving a counterexample in
which the maximal potential gain is zero but the error is
not. More details will be shown in Appendix B.

4.3 Influence as an Impurity Measure

From the above discussions, the potential gain using con-
ventional impurity measure, which is used in CART, tends
to be zero in the worst case. In this section, we will present
a new impurity measure called Influence, which never fails
to achieve a nonzero impurity gain. To begin with, we in-
troduce the definition of Influence as follows:
Definition 1. (G-Influence) Let p and f be a product dis-
tribution and a mapping from X to Y = {0, 1}, respec-
tively. The G-Influence of f on X(k) is defined by

InfGk [f ] ≜ Ep(j ̸=k)

[
G
(
Ep(k)

[
f(X)

])]
,

where

Ep(j ̸=k) [·] ≜ EX(1)∼p(1)...EX(k−1)∼p(k−1)

EX(k+1)∼p(k+1) . . .EX(d)∼p(d) [·] ,

or equivalently taking expectation over all the coordinates
except X(k) over product distribution p.

It is natural to define the conditional Influence as follows:
Definition 2. (Conditional G-Influence) With the same no-
tations in Definition 1, the conditional Influence of function
f at leaf t is defined by

InfGk [f | t] ≜ Ep(j ̸=k)

[
G
(
Ep(k)

[
f(X) | X ∈ t

])]
.

With Definition 2 at hand, we can write the impurity gain
induced by Influence as follows:

∆Inf(t, k, s) = pt

(
GInf(t)−wtLGInf(tL)−wtRGInf(tR)

)
,

where we re-define G(t) ≜ InfGk [f | t] for simplicity. Then,
InfCART splits every leaf t by maximizing

max
k,s

∆Inf(t, k, s) .
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We compare CART with InfCART in Table 1, where we
write the impurity measure of CART redundantly for com-
parison. Different from CART, InfCART takes an expecta-
tion taken later than the impurity function G. We will then
show that the slight difference makes great help for lower
bounding the impurity gain nontrivially.

Table 1: Comparison of CART and InfCART

Impurity Measure

CART G(t) = 1
d

∑d
k=1

[
G
(
Ep(j ̸=k)Ep(k)

[
f(X) | X ∈ t

])]
InfCART G(t) = 1

d

∑d
k=1 Ep(j ̸=k)

[
G
(
Ep(k)

[
f(X) | X ∈ t

])]

Proposition 3. For any product distribution p on X and
any target function f̂ : X → Y , InfCART gets no impurity
gain if and only if it reaches zero error.

Proposition 3 shows an advantage of InfCART compared
with CART; the former never fails to obtain impurity gain
without any assumptions on the target functions [Klu-
sowski, 2021; Scornet et al., 2015], while the latter can not.

As shown in Figure 1, CART calculates the impurity by
taking the average of labels in each child into impurity
function G, leading to impurities equal to 1 in both the par-
ent and the two children, and thus gets no impurity gain for
any cut in this example. Nevertheless, InfCART treats the
leaf as many horizontal lines and calculates the impurity
gain by taking an average over the impurity gain at every
line, which always yields a nonzero impurity gain.

+1
-1

(a) CART

+1
-1

(b) InfCART

Figure 1: Comparison of the calculation machines of im-
purity gain between CART and InfCART for solving the
“XOR” problem. In contrast to the CART that calculates
impurities by taking an average over all the samples in the
leaves and thus gets a zero impurity gain, InfCART decom-
poses the leaves into lines and calculates the average impu-
rities over the lines, which yields a positive impurity gain.

Unfortunately, InfCART requires an Influence oracle to
calculate the impurity gain, as the expectations in Defini-
tion 2 are taken over the population, which is impractical
for real-world tasks. The definition of Influence depends
on Assumption 3 or features being independent on each

Algorithm 1 Histogram Density Estimation (HDE)
Input: Training dataset D, grid size h
Output: An estimated probability density function p̂X

1: for k ∈ [d] do
2: B ←

{
[0, h], [0, 2h], . . . [0, 1]

}
3: for b in B do
4: ω(b)← 1/(nh)

∑n
i=1 I{X

(k)
i ∈ b}

5: p̂X(k)(x)← ω(b), for x ∈ b, b ∈ B
6: p̂X ←

∏d
k=1 p̂X(k)

7: return p̂X

others [Kahn et al., 1988; O’Donnell, 2014]. It is a strong
assumption but is still weaker as discussed in Section 3.

5 GridCART: A Refined CART with
Consistency Guarantee

This section presents the GridCART, whose key idea is to
estimate the underlying distribution so that Influence can be
obtained from the estimated distribution. Therefore, Grid-
CART can be a not only practical but also provably consis-
tent heuristic algorithm. It consists of three steps: estimat-
ing the feature distribution, estimating the target function,
and tree building, which are detailed in Algorithm 1-4.

5.1 Estimate the Feature Distribution

In this step, we venture to estimate a univariate distri-
bution for each dimension, and the estimated density of
the joint distribution is the multiplication of them. The
key reason is that the notorious curse of dimensionality in
non-parametric density estimation [Devroye et al., 1997]
may be avoided, as shown in Lemma 4. The process
of density estimation for each dimension can be handled
by some well-known histogram methods [Devroye et al.,
1997; Wasserman, 2006], which is detailed in Algorithm 1.

Lemma 4. If L1-error of estimators p̂X(k) has upper
bound E

[
∥p̂X(k)−pX(k)∥1

]
≤ ek and Assumption 3 holds,

then the following holds

E

[∥∥∥∥∥
d∏

k=1

p̂X(k) − pX

∥∥∥∥∥
1

]
≤

d∑
k=1

ek .

Generally, it is hard to estimate the distribution in high di-
mensions. However, Lemma 4 reduces the d-dimension
case to many 1-dimension cases, making the estimation
much easier. The total loss can be bounded by the summa-
tion of error in each dimension which is linear in d in the
worst case but not depends on d exponentially in general
cases [Tsybakov, 2009]. Combining it with the error bound
of the histogram density estimation, we obtain Lemma 5.
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Algorithm 2 Learning Histogram Classifier (LHC)
Input: Training dataset D, grid size h
Output: A histogram classifier ghist

n

1: // Cartesian product of intervals
2: C←

{
×d

k=1 [mkh, (mk + 1)h) | mk ∈ [1/h],∀j
}

3: for C in C do
4:

η̂(C)←
∑n

i=1 I{Xi ∈ C}Yi∑n
i=1 I{Xi ∈ C}

5: ghist
n (x)← I{η̂(c) > 1/2}, for x ∈ C, C ∈ C

6: return ghist
n

Lemma 5. Under Assumption 2 and 3, the L1-error of his-
togram density estimator can be upper bounded by

E

[∥∥∥∥∥
d∏

k=1

p̂X(k) − pX

∥∥∥∥∥
1

]
≤ O

(
d

(
hn +

√
1

nhn

))
.

Lemma 5 provides an error bound for the density estimator
in Algorithm 1. Based on this lemma, we have the expected
L1-error has orderO(n−1/3), by selecting the window size
hn = Θ(n−1/3). The error bound does not depend on d
exponentially, implying that the curse of dimensionality is
avoided under Assumption 3.

5.2 Estimate the Target Function

We use the well-known histogram classifier [Devroye et al.,
1997; Wasserman, 2006] to estimate the target function,
which is detailed in Algorithm 2. We split the feature space
X = [0, 1]d into many length-hn disjoint cubes [0, 1]d =⋃

j∈J Cj . Every cube Cj has form ×d
k=1[mkhn, (mk +

1)hn), where mk ∈ N, and we have the number of cubes
|J | ∝ 1

hd
n

by simple calculations. The endpoint 11×d is
neglected for simplicity. Let C(x) be the cube that contains
x for any x ∈ X , then we can define

η̂n(x) ≜

∑n
i=1 YiI{Xi ∈ C(x)}∑n
i=1 I{Xi ∈ C(x)}

as the estimated conditional probability. If no samples are
falling into the cube C(x), we choose a uniformly random
label as the output. The histogram classifier ghist

n can even-
tually be defined by

ghist
n (x) = I{η̂n(x) > 1/2} ,

or equivalently predict the label by voting in every cube.
Then we have the following conclusion.
Lemma 6. Under Assumption 1, suppose that the his-
togram rule satisfies hn → 0 and nhd

n → ∞ as n → ∞.
For any p, η, n > 0 we have

E
[
R
(
ghist
n

)]
−R⋆ ≤ O

(
hn +

√
1

nhd
n

)
.

Algorithm 3 Tree Building (TB)
Input: A histogram density estimator p̂, a histogram clas-
sifier ghist

n , maximal tree depth Kmax, grid size h
Output: A learned tree TKmax : Rd → {0, 1}

1: Pass p ← p̂ and f ← ghist
n to the definition of condi-

tional Influence in Definition 2
2: // Initialize the leaves set by the whole feature space
3: Leaves set L ← {[0, 1]d}
4: for K = 1 . . .Kmax do
5: L′ ← L // Copy a leaves set
6: for t ∈ L′ do
7: if All the samples in t have the same label then
8: continue
9: else

10: (k0, s0)← argmax
k,s

∆Inf(t, k, s)

11: tL ← t ∩ {x | x(k0) ≤ s0}
12: tR ← t ∩ {x | x(k0) > s0}
13: L ← (L − t) ∪ tL ∪ tR

14: T (x)← argmax
y∈{0,1}

∑n
i=1 I{Xi ∈ t, Yi = y}, for x ∈ t

15: return T

Exclusively provided that hn = Θ(n−1/(d+2)), we obtain
a consistency rate of order O(n−1/(d+2)) for ghist

n .

Lemma 6 shows that the expected excess error of the his-
togram classifier can converge to zero in order related to n
and hn. Intuitively, as sample size n → ∞ and hn → 0,
the number of cubes |J | → ∞, which helps capture more
detail in feature space; and the number of samples dropping
into every cube |{X1,X2, ...,Xn} ∩ C| → ∞ in probabil-
ity, which makes the voting more and more accurate.

5.3 Tree Constructing

With estimator p̂ and ghist
n at hand, we can build a tree by

running Algorithm 3.

To show the convergence guarantee of the error, we begin
with the following definition:

Definition 3 (N -piece function). A function f is called an
N -piece function if fk(z) is a piecewise constant function
with at most N pieces for any k ∈ [d], where fk(z) ≜
f
(
x(1), . . . ,x(k−1), z,x(k+1), . . . ,x(d)

)
with x ∈ Rd.

Definition 3 is an extension of the piecewise-constant func-
tion in univariate cases. An example of a 5-piece function
is given in Figure 2, in which given either x1 or x2, the
univariate function is piece-wise constant with 5 pieces. It
is not difficult to show that the histogram classifier learned
by Algorithm 2 is an 1/hn-piece function.

Theorem 7. Suppose that the target function g is N -piece.
Then, under Assumption 1-3, for the tree T generated by
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Algorithm 3 with depth K, we have

E
[
I
{
T (X) ̸= ghist

n (X)
}]
≤ O

(
N3/K

)
.

Theorem 7 shows that Algorithm 3 can fit any product dis-
tribution with N -piece function well. Comparing our result
with the previous work [Blanc et al., 2020b], they consid-
ered binary features and size-s tree target functions, while
we consider the setting where the feature space is real-
valued and the target function is N -piece.

1

0

1

0

1

0

0

0

1

1

1

1

0

1

0

0

1

0

1

0

1

1

0

1

0

1/5 2/5 3/5 4/5 5/5

5/5

4/5

3/5

2/5

1/5

0

(a)

0

1

1/5 2/5 3/5 4/5 5/5

(b)

Figure 2: An example of a 5-piece function from [0, 1]2 to
{0, 1}. Figure 2a presents the graph of the function and
Figure 2b shows its projection on x2 = 0.9.

5.4 Consistency Rate of GridCART

Above all, we have introduced all the components of Grid-
CART and the complete process is detailed in Algorithm 4.
In this subsection, we will show the consistency rate of
GridCART. We start with the following decomposition:

R(T )−R⋆ =
(
R(T )−R(ghist

n )
)

︸ ︷︷ ︸
estimation error

+
(
R(ghist

n )−R⋆
)

︸ ︷︷ ︸
approximation error

,

(1)
where we define R(T )−R(ghist

n ) and R(ghist
n )−R⋆ as the

estimation error and the approximation error, respectively.
Note that the definition may be slightly different from the
known R(T )− infh∈H R(h) and infh∈H R(h)−R⋆, since
in other learning algorithms the learning objective is to fit
the best classifier in the given hypothesis set, while the ob-
jective here is to fit the histogram classifier by a tree. We
then decompose the estimation error as follows:

R(T )−R(ghist
n ) (2)

= E
[
I
{
T (X) ̸= Y

}]
− E

[
I
{
ghist
n (X) ̸= Y

}]
≤ EDn,p

[
I
{
T (X) ̸= ghist

n (X)
}]

︸ ︷︷ ︸
term (a)

+EDn ∥p̂X − pX∥1︸ ︷︷ ︸
term (b)

,

where term (a) measures how the learned tree fits the his-
togram classifier, and term (b) measures the difference be-
tween the estimated distribution p̂ and the ground truth dis-
tribution p. We learn a tree on an estimated distribution; if

Algorithm 4 Grid-based Classification And Regression
Tree (GridCART) for binary classification
Input: Training dataset D = {(X1, Y1), ..., (Xn, Yn)},
maximal tree depth Kmax, grid size h
Output: A learned tree TKmax : Rd → {0, 1}

1: // Estimating the distribution and the target function
2: for k = 1 . . . d do
3: // Learn the distribution pX(k) by applying
4: histogram density estimation with window size h
5: p̂X(k) ← HDE

(
{X(k)

1 , ...,X
(k)
n }, h

)
6: p̂X ←

∏d
k=1 p̂X(k)

7:
8: // Learn the histogram classifier with grid size h
9: ghist

n ← LHC(D,h)
10:
11: // Build a tree to fit the histogram classifier
12: T ← TB(p̂X, ghist

n )
13: return T

the estimation is accurate enough, and the tree fits well,
then the learned tree can perform as well as the histogram
classifier. Taking the error bounds in Lemma 5, Lemma 6,
and Theorem 7 into Eq. (1) and Eq. (2), we obtain the con-
sistency rate of GridCART in Theorem 8.

Theorem 8 (Consistency rate for binary classification).
Under Assumption 1-3, the expected excess error of tree
TKn learned by Algorithm 4 has the following upper bound

EDn

[
R(TKn)

]
−R⋆ ≤ O

(
1

Knh3
n

+ hn +

√
1

nhd
n

)
.

Choosing hn = Θ
(
n−1/(d+2)

)
, Kn = Ω(n4/(d+2)), we

obtain a consistency rate of order O
(
n−1/(d+2)

)
.

The consistency rate in Theorem 8 is the first nontrivial
consistency rate for heuristic tree learning algorithms. The
previous consistency rate focused on the randomized tree,
which generates independently on the labels, whereas pre-
vious works for label-dependent generating relied on strong
assumptions and presented no consistency rate. More de-
tails for comparison are shown in Table 2. Notice that the
parameter Kn in Theorem 8 controls the maximal depth
the tree can grow with. Choosing Kn = Ω(n4/(d+2))
reaches the best convergence rate in the theorem, whereas
this may be inefficient in running time. Here, we choose
Kn = ω(log3(n)) and hn = Θ(1/ log n) to achieve both
an efficient running time and the consistency.

5.5 Discussions about Time Complexity

In this section, we compare the time complexity of CART
and our proposed GridCART. Note that the comparison fo-
cuses on the complexity of splitting at each leaf node, i.e.,
we neglect the comparison of the structures of trees, as the
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Table 2: Comparison of our results with previous works

Algorithm Feature
Distribution

Target
Function Result

Pure Random
Tree any any O(n−1/(8d+2))

[Gao and Zhou, 2020]

Centered
Random Tree any any O((lnn/n)1/(d+2))

[Gao and Zhou, 2020]

CART
uniformly
random
in [0, 1]d

additive
model

o(1)
[Scornet et al., 2015]

CART any
additive
model

O(1/ log n)
[Klusowski, 2021]

GridCART
product

distribution any O(n−1/(d+2))
(our result)

total time spent in building a tree is a simple summation of
the splitting complexity at all leaves.

CART. At each leaf node, CART traverses all the dimen-
sions and sorts the samples falling into the leaf according
to the dimension. After that, CART calculates the impu-
rity gains for all the possible cuts. The time complexity of
traversing all possible cuts is dominated by the complexity
of sorting. For each dimension, the sorting may spend a
time of order O(n log n), resulting in a total time of order
O(dn log n) at each leaf node.

GridCART. GridCART first estimates the underlying
distribution using observed samples with time complexity
of order O(n). When splitting a node, there are d/hn pos-
sible cuts as there are 1/hn possible cuts along each di-
mension. To calculate the impurity gain of a specific cut,
we only need one traverse over all the cubes, resulting in
time complexity of order O(1/hd

n). Therefore, the total
complexity of one split is O

(
d/h

(d+1)
n

)
. We can achieve

O
(
n + dn(d+1)/(d+2)

)
, provided hn = Θ(n−1/(d+2)) as

shown in Theorem 8, being slightly faster than CART.

Based on the above analysis, we can conclude that Grid-
CART is faster than CART for splitting since GridCART
converts data to cubes with the number of order o(n) and
stores data into an ordered form, in which no sorting is re-
quired and then a log is eliminated.

6 Beyond Binary Classification

In this section, we extend the proposed GridCART to multi-
class classifications and regression settings.

6.1 Multiclass Classification

We consider the multi-class classification, e.g., Y =
{1, 2, . . . ,m} for m ∈ N+. To begin with, we first define
the conditional G-Influence for multi-class classification.

Definition 4 (Conditional G-Influence for class c). Sup-

pose that X is drawn from a product distribution. Condi-
tional Influence of function f : X → Y on variable X(k)

w.r.t. class c at leaf t is defined by

InfGk [f, c | t] ≜ Ep(j ̸=k)

[
G
(
Pr
p(k)

[
f(X) = c | t

])]
,

where we here abbreviate Ep(j ̸=k)

[
I
{
f(X) = c

}
| X ∈ t

]
as Prp(j ̸=k)

[
f(X) = c | t

]
for simplicity.

With the definition of Influence at hand, the extension from
binary classification to multi-class classification is simple.
We first define the impurity measure as follows:

G(t) = 1

dm

d∑
k=1

m∑
c=1

InfGk [f, c | t] .

Then, every leaf node is split by solving

max
k,s
G(t)− wtLG(tL)− wtRG(tR) .

Note that when m = 2, by using the fact that G(x) =
G(1− x) for all impurity function G, we have

InfGk [f, 1 | t] = Ep(j ̸=k)

[
G
(
Pr
p(k)

[
f(X) = 1 | t

])]
= Ep(j ̸=k)

[
G
(
1− Pr

p(k)

[
f(X) = 2 | t

])]
= Ep(j ̸=k)

[
G
(
Pr
p(k)

[
f(X) = 2 | t

])]
= InfGk [f, 2 | t] ,

which implies that the definition of impurity measure re-
covers the binary classification setting in Definition 2.

Similarly, the consistency rate for binary classification can
be extended to multi-class classification cases. The key
step is to pre-define the Bayes error and the target func-
tion, and then the extension is natural, which is detailed in
Appendix F for anyone interested.

6.2 Regression

We consider the regression task, e.g., Y = [−M,M ] for
some M > 0. Similarly, we first formulate the conditional
Influence for regression tasks.

Definition 5 (Conditional Influence for regression). Let p
and f be a product distribution and a mapping from X to
Y = R, respectively. The conditional Influence of function
f on variable X(k) is defined by

Infk[f | t] ≜ Ep(j ̸=k)

[
Varp(k)

[
f(X) | X ∈ t

]]
,

where we choose variance as the impurity measure, which
is widely used in regression tasks [Breiman et al., 1984].
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Figure 3: Comparison of excess errors for GridCART trained with increasing training sample sizes and our error bounds.
The blue curves are the mean empirical excess errors (test error minus the Bayes error), and the blue regions are filled
between the minimal and the maximal values among multiple repeats. The orange curves are the error bound we presented
in Theorem 8. The order of excess error nearly matches our presented upper bound in many cases.

For regression tasks, we replace the criterion in Algo-
rithm 3 [Line 10] as follows:

(k0, s0)← argmax
k,s

∆Inf
reg(t, k, s) ,

where

∆Inf
reg(t, k, s) ≜

Infk[f | t]− wtL Infk[f | tL]− wtR Infk[f | tR] .

Besides, the histogram method output ghist
n ← η̂(c) in Al-

gorithm 2 [Line 5] directly.
Theorem 9 (Consistency rate for regression). Suppose that
Assumption 1-3 hold and Y = [−M,M ] for some M > 0.
The excess error of tree TKn generated by GridCART for
regression has the following upper bound:

EDn

[
R(TKn

)
]
−R⋆ = O

(
M
( 1

Knh3
n

+ hn +

√
1

nhd
n

))
.

Theorem 9 shows that GridCART for regression is con-
sistent with order O(Mn−1/(d+2)). In contrast to Theo-

rem 8 for binary classification, Theorem 9 shows that an
extra constant M would be suffered for regression tasks,
which coincides with the fact that the regression task be-
comes more difficult if the range of label space Y is wider.

7 Numerical Simulation

To corroborate our theoretical results, we present some nu-
merical simulations. We choose many synthetic datasets
and plot the decreasing errors as sample sizes increase. For
each pair of datasets and sample sizes, we repeat the exper-
iment ten times. The curves of excess errors as well as our
error bound about training sample sizes are shown in Fig-
ure 3. Note that the upper bound we present is relevant to
unknown constants so we have to rescale the upper bound
to fit the mean values for the comparison.

As shown in Figure 3, the blue lines represent the mean
value and the blue regions are filled between the minimal
and maximal values. The shape of the two curves in most
of the subplots can nearly match, implying that the order
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of our upper bound is not so far away from the worst-case
error in practice. In the problems of Ball and XOR, the
bound curves can not match the blue lines well. This is be-
cause our error bound is obtained based on the worst-case
analysis, which can be pessimistic in some cases. In other
words, the two problems are not difficult for GridCART.

Besides, we also compare the proposed GridCART with the
typical CART empirically. Due to space limitations, one
can access these materials from Appendix G if interested.

8 Conclusions

In this work, we first investigated the difficulty in proving
the consistency of CART, and then disclosed that no impu-
rity gain in the worst case leads to the hardness to obtain
a nontrivial result. Motivated by this recognition, we pro-
posed the GridCART, a slightly modified CART, and pro-
vided a consistency rate of order O(n−1/(d+2)), which is
the first consistency rate for the heuristic tree learning algo-
rithm. Our results shed light on a theoretical understanding
of the success of decision tree learning algorithms.
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Instructions for Paper Submissions to AISTATS 2023:
Supplementary Materials

This appendix provides the supplementary materials for our AISTATS 2023 work “On the Consistency Rate of Decision
Tree Learning Algorithms”, constructed according to the corresponding sections therein. The appendix is organized as
follows. Appendix A reviews notations used in this paper. Appendix B-F shows the proofs of the main theorems and
lemmas in this paper. Appendix G demonstrates experiments not presented in the main paper due to space limitations.

A Notations

Due to the large number of notations used in this paper, we review most of them in Table 3.

Table 3: Summary of notations

Notation Description

pX The underlying probability density of feature distribution

p̂ The estimated probability density of feature distribution

p̂(j ̸=k) The estimated probability density of all the coordinates except X(k)

X Random vector in X = [0, 1]d, feature of a sample drawn from distribution D

Y Random variable in Y = {0, 1}, label of a sample drawn from distribution D

Dn Samples set containing n random pairs (Xi, Yi)

X(k) The k-th dimension of random vector X

X(j ̸=k) Vector consisting of all the dimensions of X except the k-th

x Vector in X = [0, 1]d without randomness

G Impurity function G : [0, 1]→ [0, 1]

η(x), η̂(x) True and estimated conditional probability function, respectively

T (x) A function T : [0, 1]d → {0, 1} which is a tree

leaves(T ) Leaves set of the tree T

t, tL, tR Leaf of a tree, its left child, and its right child respectively

R(T ) The error of a tree T evaluating on the distribution D

hn Window size for histogram density estimation, or cube size for histogram classifier

ghist
n Histogram classifier learned from n i.i.d. samples, a function with randomness

TK
A tree generated by our proposed GridCART after running for K steps, which is a
depth-K tree
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B Proof of Proposition 2 and Proposition 3

In this section, we will prove the two propositions given in Section 4. We begin with the definition of the impurity function,
which was not mentioned due to space limitations.

Definition 6 (Impurity function). An impurity function G : [0, 1] → [0, 1] is a function that measures the impurity given
the ratio of positive samples or negative samples, which satisfies the following three properties:

1. (Normalized) G(0) = G(1) = 0 and G(1/2) = 1 which mean that if all the samples are in a positive class or negative
class, then there is no impurity. If the numbers of the two classes are the same, then it reaches the maximal impurity.

2. (Symmetric) G(x) = G(1− x), as we only care about the ratio of the positive or negative no matter which of them.

3. (Strongly concave) There exists an α > 0 such that for all θ ∈ [0, 1], x1, x2 ∈ [0, 1] we have

G
(
θx1 + (1− θ)x2

)
− θ G(x1)− (1− θ) G(x2) ≥ αθ(1− θ) (x1 − x2)

2 ,

which is useful to lower bound the impurity gain.

B.1 Proof of Proposition 2

Proposition 2. There exists a probability density p and a conditional probability function η : X → [0, 1], such that
∆K = 0 for any possible cut in every leaf.

Proof. We give a counterexample, an “XOR”-like problem in real-valued space, which can be proved with ∆K = 0, even
when the error is not zero. The feature distribution of the counterexample pX is a uniform distribution in [0, 1]2, and the
target function of which is defined as follows:

f(x(1),x(2)) =

{
0, I{x(1) < 0.5} ≠ I{x(2) < 0.5} ,
1, otherwise ,

or equivalently the exclusive OR of x(1) > 0.5 and x(2) > 0.5. We let the conditional probability function η(x) exactly be
f , i.e., the label is with probability one be the target function f(x) for all x. Then we can prove that there is no impurity
gain for CART, when K = 1, no matter which dimension k and which cut point s we choose.

∆K = CK − CK+1

=
∑

t∈leaves(TK)

ptG(t)−
∑

t∈leaves(TK+1)

ptG(t)

= G
(
[0, 1]2

)
− s G

(
tL
)
− (1− s) G

(
tR
)

= G

(
E[f | X ∈ [0, 1]2]

)
− s G

(
E
[
f | X ∈ tL

])
− (1− s) G

(
E
[
f | X ∈ tR

])
= G(1/2)− s G(1/2)− (1− s) G(1/2) (3)
= 0 ,

where we write {x | x(k) < s} and {x | x(k) ≥ s} as tL and tR, respectively. Eq. (3) is because both the positive and the
negative classes have the same ratio, no matter which cutpoint we choose.

B.2 Proof of Proposition 3

Proposition 3. For any product distribution p on X and any target function f̂ : X → Y , InfCART gets no impurity gain
if and only if it reaches zero error.

Proof. The sufficiency is also trivial so we will only show the proof of necessity. Let the maximal impurity gain of
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InfCART in every leaf be 0, by the strong concavity of the impurity function, we have

0 = max
k,s

Infk
[
[0, 1]2

]
− s Infk [tL]− (1− s) Infk [tR]

= max
k,s

Ep(j ̸=k)

[
G
(
Ep(k)

[
f | X ∈ t

])]
− wtLEp(j ̸=k)

[
G
(
Ep(k)

[
f | X ∈ tL

])]
− wtREp(j ̸=k)

[
G
(
Ep(k)

[
f | X ∈ tR

])]
≥ max

k,s
Ep(j ̸=k)

[
αwtLwtR

(
Ep(k)

[
f | X ∈ tL

]
− Ep(k)

[
f | X ∈ tL

])2]
(4)

≥ 0 ,

where (4) is by the strong concavity in Definition 6. Then almost surely for all k ∈ [d] and x1,x2 ∈ X , once x
(j ̸=k)
1 =

x
(j ̸=k)
2 then f(x1) = f(x2), implying that f is constant in every leaf. Then, we have the error R̂(T ) = 0.

C Proof of Lemma 5

We first show the proof of Lemma 4, which is the basis of Lemma 5.

C.1 Proof of Lemma 4

Lemma 4. If L1-error of estimators p̂X(k) has upper bound E
[
∥p̂X(k) −pX(k)∥1

]
≤ ek and Assumption 3 holds, then the

following holds

E

[∥∥∥∥∥
d∏

k=1

p̂X(k) − pX

∥∥∥∥∥
1

]
≤

d∑
k=1

ek .

Proof. Suppose that we have ∥p̂X(k) − pX(k)∥1 ≤ ek for all k, then we have

∥∥∥∥∥
d∏

k=1

p̂X(k) − pX

∥∥∥∥∥
1

=

∥∥∥∥∥
d∏

k=1

p̂X(k) −
d∏

k=1

pX(k)

∥∥∥∥∥
1

≤

∥∥∥∥∥
d∏

k=1

p̂X(k) − pX(1)

d∏
k=2

p̂X(k)

∥∥∥∥∥
1

+

∥∥∥∥∥pX(1)

d∏
k=2

p̂X(k) −
d∏

k=1

pX(k)

∥∥∥∥∥
1

=

∥∥∥∥∥(p̂X(1) − pX(1))

d∏
k=2

p̂X(k)

∥∥∥∥∥
1

+

∥∥∥∥∥pX(1)(

d∏
k=2

p̂X(k) −
d∏

k=2

pX(k))

∥∥∥∥∥
1

≤

∥∥∥∥∥(p̂X(1) − pX(1))

d∏
k=2

p̂X(k)

∥∥∥∥∥
1

+

∥∥∥∥∥pX(1)(p̂X(2) − pX(2))

d∏
k=3

p̂X(k)

∥∥∥∥∥
1

+

∥∥∥∥∥pX(1)pX(2)(

d∏
k=3

p̂X(k) −
d∏

k=3

pX(k))

∥∥∥∥∥
1

≤ . . .

≤
d∑

k=1

∥∥∥∥∥
k−1∏
i=1

pX(i)(p̂X(k) − pX(k))

d∏
i=k+1

p̂X(i)

∥∥∥∥∥
1

. (5)
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By the normalization of probability density, we prove that∥∥∥∥∥
k−1∏
i=1

pX(i)(p̂X(k) − pX(k))

d∏
i=k+1

p̂X(i)

∥∥∥∥∥
1

=

∫ ∣∣∣∣∣
k−1∏
i=1

pX(i)(p̂X(k) − pX(k))

d∏
i=k+1

p̂X(i)

∣∣∣∣∣ dx(1)dx(2) . . . dx(d)

=

(
k−1∏
i=1

∫
pX(i)dx(i)

)∫
|p̂X(k) − pX(k) | dx(k)

(
d∏

i=k+1

∫
p̂X(i)dx(i)

)
≤ 1 · ek · 1
≤ ek . (6)

Combining Eq. (5) and Eq. (6), we then obtain the following bound∥∥∥∥∥
d∏

k=1

p̂X(k) − pX

∥∥∥∥∥
1

≤
d∑

k=1

ek ,

which completes the proof.

C.2 Proof of Lemma 5

With Lemma 4 in hand, it suffices to prove that ek ≤ O
(
hn + 1/

√
nhn

)
. We begin with Lemma 10.

Lemma 10 (Wasserman [2006] Theorem 6.11). Suppose that p′ is absolutely continuous and that
∫
(p′(u))2du < ∞.

Then

E
[∫ [

p̂(u)− p(u)
]2

du
]
≤ O

(
h2
n +

1

nh

)
.

Provided that hn = Θ(n−1/3), we have the optimal error bound

E
[∫ [

p̂(u)− p(u)
]2

du
]
≤ O

(
n−2/3

)
.

We will then use Lemma 4 and Lemma 10 to prove Lemma 5.

Lemma 5. Under Assumption 2 and 3, the L1-error of histogram density estimator can be upper bounded by

E

[∥∥∥∥∥
d∏

k=1

p̂X(k) − pX

∥∥∥∥∥
1

]
≤ O

(
d

(
hn +

√
1

nhn

))
.

Proof. Taking the estimators into Lemma 10 we can bound the error at each dimension by

EDn

∥∥p̂X(k) − pX(k)

∥∥2
2
≤ O

(
h2
n +

1

nhn

)
.

By Hölder’s inequality ∥f · 1∥1 ≤ ∥f∥2∥1∥2, and the fact that
√
a2 + b2 ≤ |a|+ |b|, we have

EDn

∥∥p̂X(k) − pX(k)

∥∥
1
≤ O

(
hn +

√
1

nhn

)
,

which completes the proof.
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D Proof of Lemma 6

Lemma 11 (Devroye et al. [1997][Corollary 6.1]). If the classifier is defined as whether η̂n(x) ≤ 1/2, or equivalently as

gn(x) =

{
0, if η̂n(x) ≤ 1/2,

1, otherwise .

Then the excess error of classifier gn satisfies

R(gn)−R⋆ ≤ 2

∫
|η(x)− η̂n(x)|p(x)dx .

We will then prove Lemma 6 by using Lemma 11.
Lemma 6. Under Assumption 1, suppose that the histogram rule satisfies hn → 0 and nhd

n → ∞ as n → ∞. For any
p, η, n > 0 we have

E
[
R
(
ghist
n

)]
−R⋆ ≤ O

(
hn +

√
1

nhd
n

)
.

Exclusively provided that hn = Θ(n−1/(d+2)), we obtain a consistency rate of order O(n−1/(d+2)) for ghist
n .

Proof. Then it suffices to provide the error bound of |η(x)− η̂n(x)|. Our proof is based on Devroye et al. [1997][Theorem
9.4], which provided only the consistency of histogram classifiers, whereas we here showed the consistency rate. Recall
the definition of estimated conditional probability as follows:

η̂n(x) ≜

∑n
i=1 YiI{Xi ∈ C(x)}∑n
i=1 I{Xi ∈ C(x)}

.

By some simple calculation, we have

EDn

[
η̂n(x)

]
= EX1,...,Xn

EY1,...,Yn|X1,...,Xn
[η̂n(x)]

= EX1,...,Xn

∑n
i=1 Pr

[
Y = 1 | X ∈ C(x)

]
I
[
xi ∈ C(x)

]∑n
i=1 I{xi ∈ C(x)}

= Pr
[
Y = 1 | X ∈ C(x)

]
=

1

Pr
[
X ∈ C(x)

] ∫
C(x)

η(x)p(x)dx ,

which means that the expectation of η̂n(x) is a piecewise constant function. For some C that contains no samples we let
η̂n(x) ≜ 0 for completeness. We then split

∫
|η(x)− η̂n(x)|p(x)dx into two terms∫

|η(x)− η̂n(x)|p(x)dx

≤
∫ ∣∣∣η(x)− EDn

[
η̂n(x)

]∣∣∣p(x)dx︸ ︷︷ ︸
term A

+

∫
EDn

[∣∣∣EDn

[
η̂n(x)

]
− η̂n(x)

∣∣∣]p(x)dx︸ ︷︷ ︸
term B

.

We bound term A as follows:∫ ∣∣∣η(x)− EDn

[
η̂n(x)

]∣∣∣p(x)dx =
∑
j∈J

∫
Cj

∣∣∣∣∣η(x)− 1

Pr
[
X ∈ Cj

] ∫
Cj

η(y)p(y)dy

∣∣∣∣∣p(x)dx
=
∑
j∈J

1

Pr
[
X ∈ Cj

] ∫
Cj

∣∣∣∣∣η(x)
∫
Cj

p(y)dy −
∫
Cj

η(y)p(y)dy

∣∣∣∣∣p(x)dx
≤
∑
j∈J

1

Pr
[
X ∈ Cj

] ∫
Cj

∫
Cj

|η(x)− η(y)|p(x)p(y)dxdy

≤
∑
j∈J

1

Pr
[
X ∈ Cj

] ∫
Cj

∫
Cj

Ldiam(Cj)p(x)p(y)dxdy ,
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where diam(Cj) ≜ maxx,x′∈Cj ∥x− x′∥2, and we use the fact that Pr
[
X ∈ Cj

]
=
∫
Cj

p(x)dx and Lipschitz condition in

Assumption 1. It is not difficult to prove that diam(Cj) = hn

√
d then we have∑

j∈J

1

Pr
[
X ∈ Cj

] ∫
Cj

∫
Cj

Ldiam(Cj)p(x)p(y)dxdy

=
∑
j∈J

1

Pr
[
X ∈ Cj

]Lhn

√
dPr

[
X ∈ Cj

]2
=Lhn

√
d
∑
j∈J

Pr
[
X ∈ Cj

]
=Lhn

√
d , (7)

Then we bound term B. At each cube Cj both η̂n(x) and EDn

[
η̂n(x)

]
are constant function. Let νn(C) =

1
n

∑n
i=1 YiI{Xi ∈ C}. Then by Jensen’s inequality, we have∫

EDn

[∣∣∣EDn

[
η̂n(x)

]
− η̂n(x)

∣∣∣]p(x)dx = EDn

[ ∫ ∣∣∣EDn

[
η̂n(x)

]
− η̂n(x)

∣∣∣p(x)dx]
=
∑
j∈J

EDn

[∣∣∣EDn

[
νn(Cj)

]
− νn(Cj)

∣∣∣]

≤
∑
j∈J

√
EDn

[∣∣∣EDn

[
νn(Cj)

]
− νn(Cj)

∣∣∣2] .
Note that EDn

[∣∣∣∣EDn

[
νn(Cj)

]
− νn(Cj)

∣∣∣∣2
]

equals to the variance of νn(Cj). It can be trivially bounded by Pr[X ∈ Cj ]

and here we use Jensen’s inequality again consequently∫
EDn

[∣∣∣EDn

[
η̂n(x)

]
− η̂n(x)

∣∣∣]p(x)dx ≤∑
j∈J

√
EDn

[∣∣∣EDn

[
νn(Cj)

]
− νn(Cj)

∣∣∣2]

≤
∑
j∈J

√
Pr
[
X ∈ Cj

]
n

≤ |J | 1
|J |

∑
j∈J

√
Pr
[
X ∈ Cj

]
n

≤ |J |

√√√√ 1

|J |
∑
j∈J

Pr
[
X ∈ Cj

]
n

=

√
|J |
n

. (8)

As X = [0, 1]d the cardinality of J is exactly 1/hd
n, take |J | = 1/hd

n into Eq. (8) we have∫
EDn

[∣∣∣EDn

[
η̂n(x)

]
− η̂n(x)

∣∣∣]p(x)dx ≤√ 1

nhd
n

. (9)

Combining Eq. (7), Eq. (9) and Lemma 11, we obtain the following bound of the excess error

R(ghist
n )−R⋆ ≤ 2

(
Lhn

√
d+

√
1

nhd
n

)
.
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E Proof of Theorem 7

We begin with the following lemmas, which will be used in the proof.

Lemma 12. Let Si ≜ |
∑i

j=1 aj | we have
∑n

i=1 Si ≥ 1
2

∑n
i=1 |ai| .

Proof. It is equivalent to proving that

2

n∑
i=1

Si ≥
n∑

i=1

|ai| .

We first combine |a1 + a2 + · · ·+ ak| and |a1 + a2 + · · ·+ ak + ak+1| together for all k, then we have

2

n∑
i=1

Si =

n∑
i=1

Si +

n∑
i=1

Si

=|a1|+
(|a1|+ |a1 + a2|)+
(|a1 + a2|+ |a1 + a2 + a3|)+
· · ·+
(|a1 + a2 + · · ·+ an−1|+ |a1 + a2 + · · ·+ an−1 + an|)+
|a1 + a2 + · · ·+ an−1 + an| .

For every pair of |a1 + a2 + · · · + ak| + |a1 + a2 + · · · + ak + ak+1|, we use the fact that |a| + |a + b| ≥ |b|. Setting
a = a1 + a2 + · · ·+ ak and b = a1 + a2 + · · · ak + ak+1, we have the following inequality holds.

2

n∑
i=1

Si ≥ |a1|+ |a2|+ · · ·+ |an|+ |a1 + a2 + · · ·+ an−1 + an|

≥ |a1|+ |a2|+ · · ·+ |an| .

This completes the proof.

Lemma 13. Suppose that there exists C > 0 such that a1 ≤ C and for all n ≥ 1 we have

an − an+1 ≥
a2n
C

,

then an ≤ C
n holds for all n ≥ 1.

Proof. We prove this by applying mathematical induction on n

1. n = 1 holds as is given in the condition.

2. Suppose that the inequality holds for n = k. We then think about the case when n = k + 1

(a) If ak ≤ C
k+1 , then ak+1 ≤ ak ≤ C

k+1 as {an}∞n=1 is decreasing

(b) Otherwise C
k ≥ ak > C

k+1 , then we have

ak+1 ≤ ak

(
1− ak

C

)
≤ C

k

(
1− 1

k + 1

)
≤ C

k + 1
,

which completes the proof.
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E.1 Proof of Theorem 7

We prove Theorem 7 by the following two steps. Firstly, we bound the impurity gain of any 1-dimension toy problem.
Then we show that the d-dimension problem can be reduced to many of them, as a result of which, we can bound the
potential after running the algorithm for K steps.

E.1.1 Step I: Analysis of the 1-dimension Case

𝑥

𝑦

−1

1

1

𝑝!

𝑝"

𝑝#

𝑝$

𝑝%

0

Figure 4: Target function of the 1-dimension toy problem

We begin with the 1-dimension case which is shown in Figure 4. In this case, we define that the 1-dimension feature
X ∼ U [0, 1], which is a uniform distribution in [0, 1]. We have 0 < pi < 1 for all 1 ≤ i ≤ N and

∑N
i=1 pi = 1. Let

Pi =
∑i

j=1 pj , we define the target function f as follows:

f(x) =

N∑
i=1

I {Pi ≤ x < Pi+1} (−1)i−1 + I {x = PN} (−1)N−1 ,

which ranges from {−1, 1}. Note that we consider Y ∈ {−1, 1} for simplicity, and it is not difficult to extend the result to
Y = {0, 1}. We can lower bound the impurity gain as follows:

max
s

G
(
E
[
f | 0 ≤ X ≤ 1

])
− s G

(
E
[
f | 0 ≤ X < s

])
− (1− s) G

(
E
[
f | s ≤ X ≤ 1

])
≥ max

s
α s(1− s)

(
E
[
f | 0 ≤ X < s]− E

[
f | s ≤ X ≤ 1]

)2
≥ max

k

(
k∑

i=1

pi

)(
N∑

i=k+1

pi

)(∑k
i=1 (−1)i−1pi∑k

i=1 pi
−
∑N

i=k+1 (−1)i−1pi∑N
i=k+1 pi

)2

. (10)

The second inequality is because the impurity gains for splitting at s ∈ R is greater than splitting at k ∈ {1, 2, . . . , N −1},
and α = 1 for Gini-index. We will then bound Eq. (10) in the following lemma.

Lemma 14. Solution of optimization problem Eq. (10) has lower bound

max
k

(
k∑

i=1

pi

)(
N∑

i=k+1

pi

)(∑k
i=1 (−1)i−1pi∑k

i=1 pi
−
∑N

i=k+1 (−1)i−1pi∑N
i=k+1 pi

)2

≥ Var2[f ]

N(N + 2)
.

Proof. Let Pi ≜
∑s

i=1 pi, Qi ≜
∑s

i=1 (−1)i−1pi then we can rewrite the original optimization problem Eq. (10) as
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follows:

max
k

(
k∑

i=1

pi

)(
N∑

i=k+1

pi

)[∑k
i=1 (−1)i−1pi∑k

i=1 pi
−
∑N

i=k+1 (−1)i−1pi∑N
i=k+1 pi

]2

= max
k

[
Qk(1− Pk)− (QN −Qk)Pk√

Pk(1− Pk)

]2

≥

∑N−1
k=1 Pk(1− Pk)

[
Qk(1−Pk)−(QN−Qk)Pk√

Pk(1−Pk)

]2
∑N−1

k=1 Pk(1− Pk)

=

∑N−1
k=1 [Qk(1− Pk)− (QN −Qk)Pk]

2∑N−1
k=1 Pk(1− Pk)

=

∑N−1
k=1 (Qk −QNPk)

2∑N−1
k=1 Pk(1− Pk)

.

The inequality is because the maximum is always greater than the weighted average. Note that E[f ] =
∑N

i=1 (−1)i−1pi
so we can rewrite the numerator

Qk −QNPk =

k∑
i=1

(−1)i−1pi −

(
N∑
i=1

(−1)i−1pi

)
k∑

i=1

pi

=

k∑
i=1

pi
[
(−1)i−1 − E[f ]

]
. (11)

For all 0 ≤ x ≤ 1 we have x(1− x) ≤ 1/4, consequently we have

N−1∑
k=1

Pk(1− Pk) ≤
N − 1

4
. (12)

Combining Eq.(11) and Eq. (12), we have

∑N−1
k=1 (Qk −QNPk)

2∑N−1
k=1 Pk(1− Pk)

≥
4
∑N−1

k=1

[∑k
i=1 pi

[
(−1)i−1 − E[f ]

]]2
N − 1

.

Using Cauchy-Schwarz inequality or the fact that
∑n

i=1 a
2
i ≥ 1

n

(∑n
i=1 |ai|

)2
we have

4
∑N−1

k=1

[∑k
i=1 pi

[
(−1)i−1 − E[f ]

]]2
N − 1

≥ 4

(N − 1)2

(
N−1∑
k=1

∣∣∣∣∣
k∑

i=1

pi[(−1)i−1 − E[f ]]

∣∣∣∣∣
)2

.

Using Lemma 12 as well as Jensen’s inequality we have

4

(N − 1)2

(
N−1∑
k=1

∣∣∣∣∣
k∑

i=1

pi
[
(−1)i−1 − E[f ]

]∣∣∣∣∣
)2

=
4

(N − 1)2

(
N∑

k=1

∣∣∣∣∣
k∑

i=1

pi
[
(−1)i−1 − E[f ]

]∣∣∣∣∣
)2

≥

(∑N
i=1

∣∣pi [(−1)i−1 − E[f ]
]∣∣)2

(N − 1)2
.

Note that the equality is because
∑N

i=1 pi
[
(−1)i−1 − E[f ]

]
= 0. Using the fact that

(∑N
i=1 |ai|

)2
≥
(∑N

i=1 ai

)2
we
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can finally obtain the following lower bound.(∑N
i=1

∣∣pi [(−1)i−1 − E[f ]
]∣∣)2

(N − 1)2
=

(∑N
i=1

∣∣(−1)i−1pi
[
1− (−1)i−1E[f ]

]∣∣)2
(N − 1)2

=

(∑N
i=1

∣∣pi [1− (−1)i−1E[f ]
]∣∣)2

(N − 1)2

≥

(∑N
i=1 pi

[
1− (−1)i−1E[f ]

])2
(N − 1)2

=

(
1− E[f ]

)2
(N − 1)2

≥ Var2[f ]

(N − 1)2
.

E.1.2 Step II: Reduce from d-dimension to 1-dimension

To reduce the general d-dimension cases to 1-dimension cases, we begin with the following conclusion.

Lemma 15 (Keller [2011][Proposition 2]). Let h : [0, 1] → [0, 1] be a concave function satisfying h(t) ≥ Ent(t) for all
0 ≤ t ≤ 1. There exists a constant B′ > 0 such that for any function f : [0, 1]d → {0, 1} with E[f ] = p we have

p(1− p) ≤ B′
d∑

k=1

Infhk [f ]
log 4

3Infhk [f ]

,

where Infhk [f ] = Ep(j ̸=k)

[
h
(
Ep(k) [f ]

)]
follows the definition in Definition 1. Then provided that h(x) = 4x(1 − x) and

B = 4B′/maxk log
4

3Infhk [f ]
, we have

p(1− p) ≤ B

d∑
k=1

Infhk [f ] .

With Lemma 14 and Lemma 15 at hand, we start proving Theorem 7.

Theorem 7. Suppose that the target function g is N -piece. Then, under Assumption 1-3, for the tree T generated by
Algorithm 3 with depth K, we have

E
[
I
{
T (X) ̸= ghist

n (X)
}]
≤ O

(
N3/K

)
.

Proof. Algorithm 3 learns a tree to fit the histogram classifier ghist
n in Algorithm 2 under the estimated distribution p̂. Let

ϵ(T ) be the error of tree T fitting the histogram classifier ghist
n , i.e.,

ϵ(T ) = EX∼p̂

[
I
{
T (X) ̸= ghist

n (X)
}]

.

Note that any x falling into leaf t has the same label, so the error is the minimum of PrX∼p̂[g
hist
n (X) = 1] and

PrX∼p̂[g
hist
n (X) = 0]. Let p = PrX∼p̂[g

hist
n (X) = 1] and h ≡ Var, by Lemma 15, we have

ϵ(T ) = min(p, 1− p) ≤ 2p(1− p) ≤ 2B

d∑
k=1

InfVar
k [ghist

n ] , (13)

which implies that the error can be bounded by the impurity measure except a constant. Note that results in Lemma 15 and
Eq. (13), which take expectations over X ∈ X , are easy to be extended to X ∈ t. We define the error at leaf t as follows:

ϵ(T | t) = min
(
Pr
[
ghist
n (X) = 1 | X ∈ t

]
,Pr

[
ghist
n (X) = 0 | X ∈ t

])
.
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Similarly, we recall the definition of conditional Influence, which has been introduced in Definition 2.

InfVar
k [f | t] = Ep(j ̸=k)

[
Var

[
Ep(k) [f | X ∈ t]

]]
.

Then, it still holds that the error is bounded by Influence, i.e.,

ϵ(T | t) ≤ 2B

d∑
k=1

InfVar
k [f | t] .

We define the potential of the learned tree TK width depth K by

CK ≜
∑
t∈TK

Pr
p̂
[X ∈ t] G(t)

=
∑
t∈TK

Pr
p̂
[X ∈ t]

1

d

d∑
k=1

InfVar
k [f | t] , (14)

where G(t) = 1
d

∑d
k=1 InfVar

k [f | t] is the impurity at leaf t. By Lemma 15 we have

ϵ(TK) =
∑

t∈leaves(TK)

Pr
p̂
[X ∈ t] ϵ(T | t)

≤ 2BdCK . (15)

Then to control the potential CK is sufficient to bound the error ϵ(TK). We firstly show that at step K the potential gain

∆K = CK − CK+1 ≥
C2

K

(N − 1)3
.

Every leaf t ∈ leaves(TK) is split into two new leaves tL and tR the impurity gain ∆(t, k, s) has the following form

∆(t, k, s) = Pr
p̂
[X ∈ t] G(t)− Pr

p̂
[X ∈ tL] G(tL)− Pr

p̂
[X ∈ tR] G(tR) ,

where Pr[X ∈ tL] + Pr[X ∈ tR] = Pr[X ∈ t]. The two children of leaf t can be written as tL = t ∩ {x | x(k) < s}
and tR = t ∩ {x | x(k) ≥ s}. At step K, we have a depth-K tree with leaves leaves(TK). Then, the potential gain is the
weighted average summation of maximal impurity gains over all the leaves, i.e.,

CK − CK+1 =
∑

t∈leaves(TK)

Pr
p̂
[X ∈ t] max

k,s
∆(t, k, s) .

For any leaf t we choose a dimension k and cut point s to maximize ∆(t, k, s), then we have

max
k,s

∆(t, k, s) ≥ 1

d

d∑
k=1

max
s

∆(t, k, s)

≥ 1

d

d∑
k=1

1

|Sk|
∑
s∈Sk

∆(t, k, s) ,

where we frequently use the fact that maxa∈A f(a) ≥ 1
|A|
∑

a∈A f(a), i.e., the maximum is no lower than the mean. As the
tree grows to fit the histogram classifier, we have Sk = {hn, 2hn, . . . , (1/hn−1)hn}, which implies that |Sk| = 1/hn−1.
Let tL and tR be {x | x(k) < s} and {x | x(k) ≥ s}, respectively, by the strong concavity of variance, then we have

∆(t, k, s) = InfVar
k

[
ghist
n | t

]
− wtL InfVar

k

[
ghist
n | tL

]
− wtR InfVar

k

[
ghist
n | tR

]
≥ Ep̂(j ̸=k)

[
wtLwtR

(
Ep̂(k)

[
ghist
n | X ∈ tL

]
− Ep̂(k)

[
ghist
n | X ∈ tR

] )2]
,
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where pt = Prp̂[X ∈ t] equals to the ratio of samples dropping into leaf t, and Sk is the set of all possible cuts for leaf t at
dimension k. As the summation is greater than the maximal, we have

∑
s∈Sk

∆(t, k, s) ≥ max
s∈Sk

Ep̂(j ̸=k)

[
wtLwtR

(
Ep̂(k)

[
ghist
n | X ∈ tL

]
− Ep̂(k)

[
ghist
n | X ∈ tR

] )2]
,

which has the same form as Eq. (10) and can be bounded using Lemma 14. Specifically, we have

max
k,s

∆(t, k, s) ≥ 1

d(N − 1)

d∑
k=1

max
s∈Sk

Ep̂(j ̸=k)

[
wtLwtR

(
Ep̂(k)

[
ghist
n | X ∈ tL

]
− Ep̂(k)

[
ghist
n | X ∈ tR

] )2]

=
1

d(N − 1)

d∑
k=1

max
s∈Sk

Ep̂(j ̸=k)

[
1

4
wtLwtR

(
Ep̂(k)

[
2ghist

n − 1 | X ∈ tL
]
− Ep̂(k)

[
2ghist

n − 1 | X ∈ tR
] )2]

≥ 4

N − 1

1

d

d∑
k=1

Ep̂(j ̸=k)

[
Var2p̂(k) [ghist

n | X ∈ t]

(N − 1)2

]
.

By Jensen’s inequality and the definition of impurity measure G, we have

4

N − 1

1

d

d∑
k=1

Ep̂(j ̸=k)

[
Var2p̂(k) [ghist

n | X ∈ t]

(N − 1)2

]
=

4

(N − 1)3
1

d

d∑
k=1

(
Ep̂(j ̸=k)

[
Var2p̂(k) [g

hist
n | X ∈ t]

] )2
≥ 4

(N − 1)3

(
1

d

d∑
k=1

Ep̂(j ̸=k)

[
Varp̂(k) [ghist

n | X ∈ t]
])2

=
4

(N − 1)3
G(t)2 .

Then the potential gain CK − CK+1 at step K is the weighted average of impurity gains over all the leaves:

CK − CK+1 =
∑

t∈leaves(TK)

pt max
k,s

∆(t, k, s)

≥
∑

t∈leaves(TK)

ptG(t)2

≥ 4

(N − 1)3

 ∑
t∈leaves(TK)

ptG(t)

2

=
4

(N − 1)3
C2

K . (16)

By Lemma 13 and Eq. (16) we can upper bound the potential CK

CK ≤
(N − 1)3

4K
. (17)

Finally, we combine the upper bounds of the error Eq. (15) and the potential Eq. (17), we have

ϵ(TK) ≤ Bd(N − 1)3

2K
= O(1/K) ,

which completes the proof.

F Beyond Binary Classification

In this section, we show more consistency rates for GridCART beyond binary classification.
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F.1 Consistency Rate for Multi-class Classification

For multi-class classification, for example Y = {1, 2, . . . ,m}. To begin with, we redefine Bayes error R⋆ ≜
minh:X→Y R(h) and Bayes optimal classifier f ∈ argmax

h:X→Y
R(h). Then, we need also redefine the conditional proba-

bility function η(x, c) = Pr[Y = c | X = x], c ∈ Y , which can recovers the definition E[Y | X = x] when m = 2.
Naturally, we can define the estimated conditional probability function and histogram classifier as follows:

η̂(x, c) ≜

∑n
i=1 I

{
Yi = c,Xi ∈ C(x)}∑n

i=1 I
{
Xi ∈ C(x)}

, ghist
n (x) ≜ argmax

c∈Y
η̂(x, c) . (18)

To derive a consistency rate of GridCART for multi-class classification, we begin with the extension of Lemma 11 below.

Corollary 16 (Extension of Devroye et al. [1997][Corollary 6.1]). Suppose that Y = {1, 2, . . . ,m}. If the classifier is
defined as gn(x) = argmax

c∈Y
η̂(x, c), or equivalently as

gn(x) =

{
0, if η̂n(x) ≤ 1/2,

1, otherwise .

Then the excess error of classifier gn satisfies

R(gn)−R⋆ ≤
∑
c∈Y

∫
|η(x, c)− η̂n(x, c)|p(x)dx .

Corollary 16 bridges the gap between the error for classification and the error for the estimation of the conditional proba-
bility function. Note that Corollary 16 recovers Lemma 11 as η(x, 0) = 1 − η(x, 1) when m = 2. With the corollary at
hand, we then have the following bound of excess error.

Corollary 17. Suppose that Y = {1, 2, . . . ,m}. Under Assumption 1, suppose that the histogram rule satisfies hn → 0
and nhd

n →∞ as n→∞. Then, for any p, η, n > 0 and histogram classifier defined by Eq. (18), we have

E
[
R
(
ghist
n

)]
−R⋆ ≤ O

(
m n−1/(d+2)

)
,

provided that hn = Θ(n−1/(d+2)).

Compared with Lemma 6, an extra constant m would be suffered for Corollary 17, implying that the task is harder when
the number of class m is larger.

F.2 Consistency Rate for Regression

Similarly, we define the Bayes error R⋆ ≜ min
h:X→Y

R(h) and the ground-truth regression function η(x) ≜ E[Y | X = x]

for regression tasks, where the error R(h) ≜ E
[
Y − h(X)

]2
is the mean square error. Then we can define the regressor

η̂(x) ≜

∑n
i=1 Yi I

{
Xi ∈ C(x)}∑n

i=1 I
{
Xi ∈ C(x)}

,

which directly outputs η̂ without taking argmax comparing with Eq. (18). Theorem 9 can be proved by following the
proofs of Lemma 5, Lemma 6, and Theorem 7, which is omitted here.

G More Experiments

This section introduces more details about experiments in Section 7 and presents more experiments to verify the effective-
ness and efficiency of our proposed GridCART.

G.1 Datasets Introduction

This subsection introduces more details, including descriptions, scales, and so on, about both synthetic and real-world
datasets we use in this paper.
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G.1.1 Synthetic Datasets

Experiments for synthetic datasets focus on the approximating ability for different target functions, therefore, all of the
synthetic datasets consist of 10000 samples with 4-dimension uniformly distributing features in [0, 1]4. As we think about
the noisy labels setting, we add 5% noise to the labels, i.e., all the labels may flip with probability 0.05. Formally, we have

Pr[Y = f(x) | X = x] = 0.95,Pr[Y = 1− f(x) | X = x] = 0.05 ,

where f(x) is the target function.

Table 4: Formulation of synthetic datasets used in our experiments

Target Forumulation

Sin f(x) = I
{
x(4) ≤ sin

[
5(x(1) + x(2) + x(3))

]}
Ball f(x) = I

{
(x(1))2 + (x(2))2 + (x(3))2 + (x(4))2 ≤ 1/2

}
Ring f(x) = I

{
1/3 ≤ (x(1))2 + (x(2))2 + (x(3))2 + (x(4))2 ≤ 2/3

}
XOR f(x) = I{x(1) < 0.5} ⊗ I{x(2) < 0.5} ⊗ I{x(3) < 0.5} ⊗ I{x(4) < 0.5}

Poly1 f(x) = I
{
4(x(1))1 + 3(x(2))2 + 2(x(3))3 + (x(4))4 ≤ 4

}
Poly2 f(x) = I

{
(x(1))4 + 2(x(2))3 + 3(x(3))2 + 4(x(4))1 ≤ 4

}

G.1.2 Real-World Datasets

The real-world datasets we use include Iris1, Abalone2, Transfusion3, Faults4, Magic5, and Accelerometer6. We rescale the
space to [0, 1]d and unify all the tasks to binary classification.

G.2 More Algorithm Details

Kernel density estimation We choose histogram density estimation as an estimator, which can be calculated simulta-
neously when building the histogram classifier, for efficiency and simplicity. As the assumption of product distribution
is violated for real-world datasets, we exploit histogram density estimation directly for the joint distribution instead of
estimating the marginals.

The choice of hn We choose hn from the set {1/N | N ∈ N+}, i.e., the interval [0, 1] is splitted to equal N parts. As
the scale of datasets is not large, choosing N − 1, N , or N + 1 may have an impact on the performance. Therefore, we
choose the best N from {N − 1, N,N + 1} by cross-validation.

G.3 Results

To show the effectiveness of our proposed GridCART, we compare three basic performance measures of the tree learned
by CART and GridCART on both synthetic and real-world datasets. The performance measures we choose include the test
accuracy, the maximal depth, and the number of leaves. Features for the synthetic dataset are the uniform distribution on
[0, 1]4, and the labels are given by an underlying target function. CART’s max depth is chosen by cross-validation, while

1https://archive.ics.uci.edu/ml/datasets/Iris
2https://archive.ics.uci.edu/ml/datasets/Abalone
3https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
4https://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults
5https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
6https://archive.ics.uci.edu/ml/datasets/Accelerometer
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the grid size of GridCART is chosen using the result Θ(n−1/(d+2)) in Theorem 8. For real-world datasets, GridCART
directly applies multivariate histogram density estimation as the assumption of product distribution may not hold. We run
every combination of algorithm and dataset twenty times and then present the mean and the standard deviation of them,
which are shown in Table 5 and Table 6.

It is observed that GridCART can always learn a tree with a smaller depth and number of leaves. Surprisingly, its gen-
eralization performance is still highly competitive with CART. It is worth mentioning that CART’s hyperparameter, the
maximal depth of the tree, is selected by cross-validation, but GirdCART requires only the default one. Besides, Grid-
CART has proven to be consistent under certain conditions, but CART’s consistency is still unclear. For real-world data,
the assumption of product distribution may not hold, but somehow, it does work. This motivates us to relax the assumption
for the analysis of our proposed GridCART in the future.

Table 5: Comparison of GridCART with CART on synthetic datasets. Bold font indicates the algorithm outperforms the
other one (higher accuracy, lower depth, or smaller number of leaves)

Dataset Test Accuracy Depth Number of Leaves Time (seconds)
CART GridCART CART GridCART CART GridCART CART GridCART

Sin 77.9 ± 1.2 83.3 ± 1.2 26.9 ± 2.9 12.3 ± 0.6 1253.7 ± 33.3 290.4 ± 7.8 72.2 ± 18.7 1.0 ± 0.2
Ball 88.8 ± 1.0 92.8 ± 0.7 31.0 ± 5.5 10.9 ± 0.7 722.0 ± 29.7 100.0 ± 13.0 80.1 ± 19.6 0.5 ± 0.1
Ring 87.0 ± 1.0 90.8 ± 0.9 26.9 ± 2.4 11.5 ± 0.5 808.7 ± 27.5 144.7 ± 11.1 72.5 ± 15.7 0.6 ± 0.1
XOR 83.1 ± 3.5 94.8 ± 0.7 33.9 ± 6.6 10.4 ± 0.7 998.6 ± 150.3 49.6 ± 11.8 138.3 ± 38.0 0.7 ± 0.2
Poly1 86.2 ± 0.9 88.8 ± 1.1 29.2 ± 3.0 11.3 ± 0.7 828.6 ± 26.0 143.7 ± 11.6 79.5 ± 22.1 0.7 ± 0.2
Poly2 86.3 ± 1.2 88.9 ± 1.1 28.5 ± 3.2 11.6 ± 0.7 825.6 ± 24.2 142.7 ± 10.1 81.2 ± 21.3 0.7 ± 0.2

Table 6: Comparison of GridCART with CART on UCI datasets [Dua and Graff, 2017]. Bold font indicates the algorithm
outperforms the other one (higher accuracy, lower depth, or smaller number of leaves)

Dataset Test Accuracy Depth Number of Leaves Time (seconds)
CART GridCART CART GridCART CART GridCART CART GridCART

Iris 100.0 ± 0.0 99.7 ± 1.4 1.0 ± 0.0 3.6 ± 1.1 2.0 ± 0.0 7.8 ± 2.5 0.01 ± 0.01 0.03 ± 0.01
Abal. 71.6 ± 1.8 74.5 ± 1.9 23.6 ± 3.0 12.8 ± 1.1 567.1 ± 13.7 203.9 ± 20.0 14.0 ± 3.6 4.1 ± 1.0
Tran. 70.9 ± 5.1 74.7 ± 3.9 18.2 ± 3.1 3.5 ± 0.7 161.1 ± 6.7 5.8 ± 1.5 0.40 ± 0.06 0.10 ± 0.02
Faul. 100.0 ± 0.0 100.0 ± 0.0 6.0 ± 0.0 6.0 ± 0.0 7.0 ± 0.0 7.0 ± 0.0 11.3 ± 2.9 5.6 ± 1.4
Magi. 81.4 ± 1.1 78.5 ± 0.8 34.8 ± 2.3 11.9 ± 1.5 1588.7 ± 24.9 118.8 ± 8.1 646.1 ± 156.5 18.8 ± 4.7
Acce. 87.6 ± 0.2 70.3 ± 0.5 40.2 ± 1.9 7.9 ± 0.3 15561.5 ± 65.0 13.6 ± 2.1 261.1 ± 90.8 21.7 ± 5.9
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