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Abstract

This paper gives an attempt to explore the manifold in
the label space for multi-label learning. Traditional la-
bel space is logical, where no manifold exists. In order
to study the label manifold, the label space should be
extended to a Euclidean space. However, the label man-
ifold is not explicitly available from the training exam-
ples. Fortunately, according to the smoothness assump-
tion that the points close to each other are more like-
ly to share a label, the local topological structure can
be shared between the feature manifold and the label
manifold. Based on this, we propose a novel method
called ML2, i.e., Multi-Label Manifold Learning, to re-
construct and exploit the label manifold. To our best
knowledge, it is one of the first attempts to explore the
manifold in the label space in multi-label learning. Ex-
tensive experiments show that the performance of multi-
label learning can be improved significantly with the la-
bel manifold.

1 Introduction
In multi-label learning, there are multiple labels associated
to the same instance simultaneously (Tsoumakas, Katakis,
and Vlahavas 2009; Zhang and Zhou 2014). Formally speak-
ing, let X = Rd be the d-dimensional feature space and
Y = {y1, . . . , yq} be the label set with q possible labels.
Given a training set D = {(xi,yi)|1 ≤ i ≤ n}, where
xi ∈ X is the feature vector and yi ∈ {0, 1}q is the label
vector, the task of traditional multi-label learning is to learn
a predictor which maps from the space of feature vectors to
the space of label vectors. Each element of the label vector
yi is a logical indicator of whether the corresponding label
is relevant or irrelevant to the instance xi. During the past
decade, multi-label learning has been applied successfully
to learn from the data with rich semantics, such as text (Ru-
bin et al. 2012; Yang et al. 2009), image (Cabral et al. 2011;
Wang, Huang, and Ding 2009), audio (Lo et al. 2011;
Sanden and Zhang 2011), video (Wang et al. 2011), etc.

In this paper, we give an attempt to improve the multi-
label learning performance with the manifold in the label
space. To our best knowledge, it is one of the first attempts
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Figure 1: Transformation of the local topological structure
from the feature space to the label space. (a) The manifold
in the feature space; (b) The traditional logical label space;
(c) The manifold in the Euclidean label space.

to explore the label manifold in multi-label learning. Tradi-
tional label space spanned by the label vector yi is logical,
and the element of yi can be called logical label. In order to
study the label manifold, the label space should be extended
to a Euclidean space. Each dimension of the space still cor-
responds to one label in Y , but the value is extended from
logical to real. Such label is called numerical label, which
carries more semantic information and can describe the in-
stance more comprehensively than the logical label.

However, the label manifold is not explicitly available
from the training examples. To reconstruct the label mani-
fold, the key issue is the topological structure. Fortunately,
there is one commonly adopted assumption by many ma-
chine learning methods called smoothness assumption (Zhu,
Lafferty, and Rosenfeld 2005; Chapelle et al. 2006), which
says that the points close to each other are more likely to
share a label. With the extension from the logical label s-
pace to the Euclidean label space, we can naturally induce
from the smoothness assumption that, the local topological
structure can be transferred from the feature space to the la-
bel space. One example is shown in Fig. 1. The subfigure
(a) shows the manifold in the feature space where the blue
square, green rhombus and purple star points are the neigh-
bors of the red point. The subfigure (b) shows the traditional
logical label space where the vertex points represent the log-
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Figure 2: Two natural scene image examples which are both
annotated with the labels water, boat, mountain, and sky.

ical label vectors for the neighbors, respectively. The sub-
figure (c) shows the manifold in the Euclidean label space
where the local topological structure is transferred from the
feature space. The transference is guided by the feature man-
ifold (a) and the logical label vectors (b). Note that although
the feature space and the label space share similar local topo-
logical structure, the global manifolds in these two spaces
are generally different.

Based on the above assumption, we propose an efficien-
t multi-label method called ML2, i.e., Muti-Label Manifold
Learning. The feature manifold is represented by a graph
and approximated by the overlapped local linear neighbor-
hood patches. The edge weights in each patch can be solved
by a least square programming procedure. Then the label
manifold is reconstructed with the transferred local topolog-
ical structure from the feature manifold and the existing log-
ical labels. The reconstruction can be achieved by a quadrat-
ic programming process. The sign of the numerical label is
used to represent whether the label is relevant or irrelevant
to the example. With the label manifold available, the ML2

can effectively find a mapping from the feature manifold to
the label manifold with a regression process.

The label manifold brings the following three advantages:
1. It helps to exploit the correlation among the labels via
the transference of the topological structure from the feature
space according to the smoothness assumption; 2. It extend-
s the traditional logical label to the numerical label, which
can describe the instance in greater details and thus brings
more possibilities for performance improvement; 3. It helps
to make more complicated decisions based on the numer-
ical labels, because the value of the numerical label could
be regarded as an indicator of the relative importance of the
corresponding label.

In further detail, the difference of the relative impor-
tance revealed by the numerical label could be two-fold: 1.
within-instance label variance, i.e., different labels relevant
to the same instance may have different numerical values;
2. between-instance label variance, i.e., the same label rele-
vant to different instances may also have different numerical
values. An example is shown in Fig. 2. Image (a) and (b) are
both annotated with the labels water, boat, mountain, and
sky. Once extended to the numerical labels, for the within-
instance label variance, the label boat should have larger
value than the label sky in (b), because the former can de-
scribe the image more apparently than the latter. Similarly,
for the between-instance label variance, the value of the la-

bel boat in (b) should be larger than the one in (a).
The rest of this paper is organized as follows. First, ex-

isting work related to our proposed approach is discussed
in Section 2. The details of ML2 are proposed in Section 3.
After that, the results of comparative studies are reported in
Section 4. Finally, conclusions are drawn in Section 5.

2 Related Work
Existing multi-label approaches can be roughly grouped into
three categories based on the thought of order of label cor-
relations (Zhang and Zhou 2014). The simplest ones are the
first-order approaches which assume independence among
class labels (Boutell et al. 2004; Zhang and Zhou 2007).
Then the multi-label classification becomes a series of bi-
nary classification problems. On the contrary, second-order
approaches consider the correlations between pairs of class
labels (Elisseeff and Weston 2001; Frnkranz et al. 2008), and
the high-order approaches consider the correlations among
label subsets or all the class labels (Tsoumakas, Katakis, and
Vlahavas 2011). For all of them, the common modeling s-
trategy is to treat each label in a crisp manner, i.e., being
either relevant or irrelevant to an instance. In contrast, ML2

explores the manifold in the label space and treats the label
as numerical. The label manifold contains more semantic in-
formation, which is beneficial for the learning process.

There have been some multi-label works which transfor-
m the logical label space to the Euclidean label space. For
example, (Tai and Lin 2012) tries to reduce the computa-
tional effort by seeking the principle correlations between
labels, especially for the data sets with large numbers of la-
bels. The bases of the Euclidean space are the combinations
of the logical label vectors. Another work (Sun, Ji, and Ye
2011) projects the feature space and the label space to a new
space where the correlation between the projections of the
two spaces are maximized. In both cases, the dimensionali-
ty of the label space is reduced. However, ML2 differs from
them without the dimensionality reduction. Besides, the for-
mer cases both produce a new space projected from the orig-
inal label space, however, ML2 extends the original logical
label space to a Euclidean space where the meaning of each
dimension still remains.

Another more related work is Label Distribution Learn-
ing (LDL) (Geng, Yin, and Zhou 2013), which is a new ma-
chine learning paradigm where each instance is annotated
by a label distribution. The label distribution covers a cer-
tain number of labels, representing the degree to which each
label describes the instance. Thus the value of each label is
numerical. However, LDL requires the availability of the la-
bel distributions in the training set, which is not always sat-
isfiable for the real applications. On the contrary, ML2 can
reconstruct the label manifold automatically from the logical
multi-label data.

It is worthy to emphasize the difference between the man-
ifold learning and ML2. Manifold learning assumes that
the data of interest actually lie on an embedded non-linear
manifold within the higher-dimensional space. Thus mani-
fold learning is mostly used for the dimensionality reduc-
tion and visualization. The three famous local approaches
in manifold learning are Locally Linear Embedding (LLE)



(Roweis and Saul 2000), Laplacian Eigenmaps (LE) (Belkin
and Niyogi 2003) and Locality Preserving Projection (LP-
P) (Niyogi 2004). The reconstruction process of the label
manifold in ML2 is similar to LLE. However, the relation
between the feature manifold and the label manifold is not
embedding or dimensionality reduction. They are in two d-
ifferent spaces that merely share the local topological struc-
ture according to the smoothness assumption.

Note that the local topological structure is transferred
from the feature space to the label space in ML2, but it is
different from transfer learning (Pan and Yang 2010). Trans-
fer learning deals with two problem spaces of different fields
or distributions. The target of the transference mainly refers
to the domain knowledge. However, ML2 transfers the topo-
logical structure from the feature space to the label space.

3 The ML2 Algorithm
As shown in Section 1, the training set of multi-label learn-
ing can be expressed as D = {(xi,yi)|1 ≤ i ≤ n}.
Given any instance xi ∈ Rd and the logical label vector
yi ∈ {+1,−1}q , we use µi ∈ Rq to denote the numerical
label vector. Note that here we use −1 instead of 0 in the
logical label vector to represent irrelevant to the example.
As many graph based learning methods do, the topological
structure can be represented by a graph G =< V, E ,W >,
where V is the vertex set, E is the edge set in which each
edge eji represents the relationship between the data xi and
xj , and W is the weight matrix with each element W j

i rep-
resenting the weight of the edge eji .

According to the smoothness assumption, the topologi-
cal structure of the feature space can be transferred to the
numerical label space local by local. In order to keep the
locality, we need to use the local neighborhood information
of each point to construct G. For computational convenience,
we assume that each data point can be optimally reconstruct-
ed using a linear combination of its neighbors (Roweis and
Saul 2000; Wang and Zhang 2008). Then the approximation
of the feature manifold is to induce the minimization of

E(W ) =

n∑
i=1

‖xi −
∑
j 6=i

W
j
i xj‖2, (1)

where W j
i = 0 unless xj is one of xi’s K-nearest neigh-

bors. Note that under most conditions W j
i 6= W i

j . Further
for translation invariance, we constrain 1TWi = 1, where
Wi = [W 1

i , . . . ,W
n
i ]

T, and 1 is the vector of all ones.
Then the approximation can be solved by the following n

standard least square programming problems
min
Wi

W
T
i GiWi

s.t. 1
T
Wi = 1,

(2)

where Gi is the local Gram matrix at point xi with Gjki =
(xi − xj)T(xi − xk).

With the transferred topological structure, the reconstruc-
tion of the label manifold can infer to the minimization of

Φ(µ) =

n∑
i=1

‖µi −
∑
j 6=i

W
j
i µj‖2. (3)

Note that we are now minimizing with respect to the numer-
ical label vector µ rather thanW .

Besides, we add a constraint that makes the sign of the
numerical label represent whether the corresponding label is
relevant or irrelevant to the example that

∀1 ≤ i ≤ n, 1 ≤ l ≤ q y
l
iµ

l
i ≥ λ, (4)

where λ > 0. The optimization for (3) with constraint (4) is
a constrained quadratic programming process, and it can be
solved efficiently.

There are three advantages for the constraint (4): 1. It is
convenient to judge whether a label is relevant or irrelevant
to the example by the sign of it; 2. It guarantees that the rel-
evant numerical labels are larger than the irrelevant ones; 3.
The minimum of the relevant numerical labels will be equal
to λ or the maximum of the irrelevant numerical labels will
be equal to −λ. This makes the scale of the reconstructed
numerical labels on the control.

The reconstructed numerical labels are real and the prob-
lem can not be treated as a classification but rather a regres-
sion problem. In the multi-label case, it is actually a multi-
output regression problem. There have been some efficient
algorithms proposed such as multi-output support vector re-
gression (MSVR) (Prez-Cruz et al. 2002; Tuia et al. 2011;
Chung et al. 2014), k-nearest neighbor regression (KN-
NR) (Burba, Ferraty, and Vieu 2009) and structured output-
associative regression (SOAR) (Bo and Sminchisescu 2009).
Here we propose a regressor based on the MSVR.

Similar to the MSVR, we generalize the 1-D SVR to solve
the multi-dimensional case. In addition, our regressor not
only concerns the distance between the predicted and the
real values, but also the sign consistency of them. It leads to
the minimization of

L(Θ, b) =
1

2

q∑
j=1

‖θj‖2 + C1

n∑
i=1

L1(ri) + C2

n∑
i=1

q∑
j=1

L2(t
j
i ), (5)

where ri = ‖ei‖ =
√
eTi ei, ei = µi − ϕ(xi)

TΘ − b,
tji = yji (ϕ(xi)

Tθj + bj) , Θ = [θ1, ...,θq], b = [b1, ..., bq],
and ϕ(x) is a nonlinear transformation of x to a higher-
dimensional feature space RH.

To consider all dimensions into a unique restriction and
yield a single support vector for all dimensions, the L1 loss
is set as

L1(r) =

0 r < ε

r2 − 2rε+ ε2 r ≥ ε.
(6)

This will create an insensitive zone determined by ε around
the estimate, i.e., the loss of r less than ε will be ignored.

To make the signs of the numerical label and the logical
label same as much as possible, the L2 loss is set as

L2(t) = −tσ(−t) =

0, t > 0

−t, t ≤ 0
, (7)

where σ(t) is an activation function where the value will be
equal to 0 if t is negative, otherwise the value will be equal to
1. The meaning of Eq. (7) is that if the signs of the predicted
numerical label and the logical label are different, there will
be some positive loss, otherwise the loss will be zero.



Table 1: Characteristics of the bench mark multi-label data sets.
Data set |S| dim(S) L(S) F (S) LCard(S) LDen(S) DL(S) PDL(S) Domain
cal500 502 68 174 numeric 26.044 0.150 502 1.000 audio
llog 1460 1004 75 nominal 1.180 0.016 286 0.196 text
enron 1702 1001 53 nominal 3.378 0.064 753 0.442 text
image 2000 294 5 numeric 1.236 0.247 20 0.010 images
scene 2407 294 6 numeric 1.074 0.179 15 0.006 images
yeast 2417 103 14 numeric 4.237 0.303 198 0.082 biology
slashdot 3782 1079 22 nominal 1.181 0.054 156 0.041 text
corel5k 5000 499 374 nominal 3.522 0.009 3175 0.635 images
rcv1-s1 6000 944 101 numeric 2.880 0.029 1028 0.171 text
rcv1-s2 6000 944 101 numeric 2.634 0.026 954 0.159 text
bibtex 7395 1836 159 nominal 2.402 0.015 2856 0.386 text
corel16k-s1 13766 500 153 nominal 2.859 0.019 4803 0.349 images
corel16k-s2 13761 500 164 nominal 2.882 0.018 4868 0.354 images
tmc2007 28696 981 22 nominal 2.158 0.098 1341 0.047 text

To minimize L(Θ, b), we use an iterative quasi-Newton
method called Iterative Re-Weighted Least Square (IRWLS)
(Prez-Cruz et al. 2000). Firstly,L1(Θ, b) is approximated by
its first order Taylor expansion at the solution of the current
k-th iteration, denoted by Θ(k) and b(k):

L
′
1(ri) =L1(r

(k)
i ) +

dL1(r)

dr

∣∣∣∣∣
r
(k)
i

(e
(k)
i )T

r
(k)
i

(
ei − e(k)

i

)
, (8)

where e(k)
i and r(k)

i are calculated from Θ(k) and b(k). Then
a quadratic approximation is further constructed

L
′′
1 (ri) =L1(r

(k)
i ) +

dL1(r)

dr

∣∣∣∣∣
r
(k)
i

r2i − (r
(k)
i )2

2r
(k)
i

=
1

2
air

2
i + τ,

(9)

where

ai =
1

r
(k)
i

dL1(r)

dr

∣∣∣∣∣
r
(k)
i

=


0 r

(k)
i < ε,

2

(
r
(k)
i
−ε

)
r
(k)
i

r
(k)
i ≥ ε,

(10)

and τ is a constant term that does not depend on either Θ(k)

or b(k). Combining Eq. (5), (7) and (9) can get

L
′′

(Θ, b) =
1

2

c∑
j=1

‖θj‖2 +
1

2
C1

n∑
i=1

air
2
i − C2

n∑
i=1

q∑
j=1

t
j
iσ(−tji ) + τ.

(11)

It is a piecewise quadratic problem whose optimum can be
integrated as solving a system of linear equations for j =
1, . . . , q:[
C1ΦTDaΦ + I C1ΦTa

C1a
TΦ C11Ta

][
θj

bj

]
=

[
C1ΦTDaµ

j + C2ΦTDjy
j

C1a
Tµj + C2(σj)Tyj

]
,

(12)

where Φ = [ϕ(x1), ..., ϕ(xn)]
T, a = [a1, ..., an]

T,
(Da)

k
i = aiδ

k
i (δki is the Kronecker’s delta function),

(Dj)
k
i = σ(−tji )δki , σj = [σ(−tj1), . . . , σ(−tjn)]T, yj =

[yj1, . . . , y
j
n]

T. Then, the direction of the optimal solution
of Eq. (12) is used as the descending direction for the op-
timization of L(Θ, b), and the solution for the next iteration
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Figure 3: Experimental result on the toy data. (a) The toy
data points in the feature space; (b) The real numerical label
points; (c) The reconstructed numerical label points.

(Θ(k+1) and b(k+1)) is obtained via a line search algorithm
along this direction.

According to the representor’s theorem (Smola and
Schlkopf 1998), under fairly general conditions, a learn-
ing problem can be expressed as a linear combination of
the training examples in the feature space, i.e., θj =∑
i ϕ(xi)β

j = ΦTβj . If we replace this expression into E-
q. (12), it will generate the inner product< ϕ(xi), ϕ(xj) >,
then the kernel trick can be applied. After that the line search
algorithm can be expressed in terms of βj and bj .

4 Experiments
4.1 Experiment Configuration
Data Sets For comprehensive performance evaluation, we
collect one toy data set and fourteen real data sets for ex-
perimental studies. The toy data is 3-dimensional, where the
third dimension is calculated as the Gaussian distribution of
the first two dimensions. The mean of the Gaussian distribu-
tion is 0, and the variance on each dimension is 1. The label
space is 2-dimensional, where the numerical label vector is
calculated by µ =MTx, and

M =

 0.48 0.21

0.87 −0.76

−0.12 0.3

 . (13)

Fig. 3(a) shows the toy data points in the feature space and
(b) shows the real numerical label points. The two figures
demonstrate the rationality of the smoothness assumption,



Table 2: Predictive performance of each comparing algorithm (mean ± std. deviation) on the regular-scale data sets.
Comparing Hamming loss ↓
algorithm CAL500 llog enron image scene yeast slashdot
ML2 0.138±0.002 0.021±0.001 0.051±0.001 0.156±0.004 0.076±0.003 0.196±0.003 0.043±0.001
BR 0.137±0.002 0.017±0.001 0.060±0.001 0.185±0.004 0.111±0.003 0.201±0.003 0.049±0.001
CLR 0.137±0.002 0.018±0.001 0.055±0.001 0.186±0.005 0.112±0.003 0.201±0.003 0.050±0.001
ECC 0.182±0.005 0.025±0.001 0.056±0.001 0.218±0.027 0.096±0.003 0.207±0.003 0.056±0.001
RAKEL 0.138±0.002 0.017±0.001 0.058±0.001 0.173±0.004 0.096±0.004 0.202±0.003 0.048±0.001
Comparing One-error ↓
algorithm CAL500 llog enron image scene yeast slashdot
ML2 0.141±0.016 0.683±0.018 0.258±0.090 0.272±0.009 0.194±0.008 0.228±0.009 0.382±0.009
BR 0.362±0.039 0.858±0.009 0.498±0.012 0.406±0.012 0.348±0.007 0.256±0.008 0.501±0.007
CLR 0.121±0.016 0.756±0.008 0.279±0.010 0.328±0.017 0.255±0.009 0.228±0.007 0.436±0.005
ECC 0.137±0.021 0.720±0.012 0.293±0.008 0.408±0.069 0.247±0.010 0.244±0.009 0.418±0.009
RAKEL 0.286±0.039 0.838±0.014 0.412±0.016 0.312±0.010 0.247±0.009 0.251±0.008 0.453±0.005
Comparing Coverage ↓
algorithm CAL500 llog enron image scene yeast slashdot
ML2 0.780±0.008 0.162±0.008 0.256±0.017 0.168±0.007 0.067±0.003 0.454±0.004 0.112±0.003
BR 0.972±0.001 0.468±0.010 0.595±0.010 0.280±0.008 0.158±0.004 0.641±0.005 0.238±0.005
CLR 0.751±0.008 0.155±0.010 0.229±0.006 0.190±0.007 0.083±0.003 0.462±0.005 0.109±0.003
ECC 0.806±0.016 0.309±0.014 0.349±0.014 0.229±0.034 0.084±0.002 0.464±0.005 0.130±0.004
RAKEL 0.971±0.001 0.459±0.011 0.523±0.008 0.209±0.009 0.104±0.003 0.558±0.006 0.212±0.005
Comparing Ranking loss ↓
algorithm CAL500 llog enron image scene yeast slashdot
ML2 0.188±0.002 0.158±0.005 0.090±0.012 0.143±0.007 0.064±0.003 0.168±0.003 0.095±0.003
BR 0.518±0.008 0.421±0.008 0.308±0.007 0.285±0.009 0.171±0.005 0.315±0.005 0.216±0.005
CLR 0.181±0.002 0.121±0.007 0.079±0.002 0.171±0.008 0.083±0.004 0.172±0.004 0.094±0.003
ECC 0.204±0.008 0.367±0.011 0.133±0.004 0.224±0.043 0.085±0.003 0.186±0.003 0.131±0.005
RAKEL 0.444±0.005 0.412±0.010 0.241±0.005 0.196±0.008 0.107±0.003 0.245±0.004 0.190±0.005
Comparing Average precision ↑
algorithm CAL500 llog enron image scene yeast slashdot
ML2 0.501±0.003 0.405±0.013 0.681±0.053 0.824±0.006 0.885±0.004 0.765±0.005 0.711±0.005
BR 0.275±0.006 0.178±0.009 0.449±0.011 0.709±0.008 0.771±0.005 0.672±0.005 0.572±0.005
CLR 0.499±0.005 0.377±0.008 0.675±0.005 0.789±0.009 0.850±0.006 0.758±0.005 0.674±0.003
ECC 0.482±0.008 0.316±0.009 0.651±0.006 0.739±0.043 0.853±0.005 0.752±0.006 0.680±0.006
RAKEL 0.353±0.006 0.197±0.013 0.539±0.006 0.788±0.006 0.843±0.005 0.720±0.005 0.617±0.004
Comparing Macro-averaging AUC ↑
algorithm CAL500 llog enron image scene yeast slashdot
ML2 0.558±0.006 0.705±0.017 0.714±0.021 0.861±0.005 0.948±0.004 0.702±0.007 0.870±0.006
BR 0.500±0.001 0.517±0.002 0.579±0.007 0.705±0.007 0.801±0.003 0.565±0.003 0.656±0.009
CLR 0.533±0.007 0.676±0.014 0.698±0.013 0.816±0.007 0.917±0.004 0.645±0.007 0.833±0.016
ECC 0.507±0.005 0.544±0.004 0.646±0.008 0.807±0.030 0.931±0.004 0.646±0.003 0.767±0.010
RAKEL 0.547±0.007 0.520±0.002 0.596±0.007 0.803±0.005 0.884±0.004 0.614±0.003 0.687±0.011

where the points close to each other in the feature space (a)
are also close in the label space (b).

Table 1 summarizes detailed characteristics of the real
data sets, which are roughly organized in ascending order
of the number of examples |S|, with seven of them being
regular-scale, i.e., |S| < 5, 000 and seven of them being
large-scale, i.e., |S| ≥ 5, 000. As shown in Table 1, the four-
teen data sets cover a broad range of cases with diversified
multi-label properties and thus serve as a solid basis for thor-
ough comparative studies.

Comparing Algorithms In this paper, we choose to com-
pare the performance of ML2 against four well-established
multi-label learning algorithms: Binary Relevance (BR)
(Boutell et al. 2004), Calibrated Label Ranking (CLR)
(Frnkranz et al. 2008), Ensemble of Classifier Chains (ECC)
(Read et al. 2011) and RAndom k-labelsets (RAKEL) (T-

soumakas, Katakis, and Vlahavas 2011), which learn from
multi-label data based on various correlation orders among
labels.

The number of neighbors K for ML2 is set to q + 1, be-
cause it is necessary that K is larger than q to generate a
q-dimensional space using K vectors. The parameters λ, C1

and C2 are set to 1, 1 and 10, respectively. The ensemble
size for RAKEL is set to 2q with k = 3.

Evaluation Metrics We use six evaluation metrics
widely-used in multi-label learning in this paper, i.e., Ham-
ming loss, One-error, Coverage, Ranking loss, Average pre-
cision and AUC (Zhang and Zhou 2014). Note that for all
the six multi-label metrics, their values vary between [0,1].
Furthermore, for average precision and AUC, the larger the
values the better the performance; While for the other four
metrics, the smaller the values the better the performance.



Table 3: Predictive performance of each comparing algorithm (mean ± std. deviation) on the large-scale data sets.
Comparing Hamming loss ↓
algorithm corel5k rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 tmc2007
ML2 0.010±0.001 0.026±0.001 0.023±0.001 0.013±0.001 0.021±0.001 0.019±0.001 0.061±0.001
BR 0.012±0.001 0.031±0.001 0.028±0.001 0.015±0.001 0.020±0.001 0.019±0.001 0.071±0.001
CLR 0.011±0.001 0.029±0.001 0.025±0.001 0.014±0.001 0.019±0.001 0.018±0.001 0.068±0.001
ECC 0.015±0.001 0.030±0.001 0.024±0.001 0.017±0.001 0.030±0.001 0.018±0.001 0.066±0.011
RAKEL 0.012±0.001 0.031±0.001 0.027±0.001 0.015±0.001 0.020±0.001 0.019±0.001 0.068±0.001
Comparing One-error ↓
algorithm corel5k rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 tmc2007
ML2 0.647±0.007 0.409±0.005 0.410±0.009 0.365±0.004 0.647±0.004 0.643±0.005 0.225±0.004
BR 0.849±0.008 0.602±0.011 0.522±0.009 0.559±0.004 0.920±0.006 0.920±0.005 0.339±0.003
CLR 0.721±0.007 0.421±0.005 0.418±0.004 0.401±0.004 0.702±0.005 0.697±0.005 0.242±0.003
ECC 0.699±0.006 0.427±0.008 0.427±0.008 0.404±0.003 0.706±0.006 0.712±0.005 0.232±0.003
RAKEL 0.819±0.010 0.548±0.014 0.472±0.007 0.506±0.005 0.886±0.007 0.897±0.006 0.253±0.003
Comparing Coverage ↓
algorithm corel5k rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 tmc2007
ML2 0.372±0.006 0.109±0.002 0.111±0.003 0.128±0.003 0.322±0.003 0.312±0.002 0.126±0.001
BR 0.898±0.003 0.448±0.005 0.383±0.006 0.461±0.006 0.673±0.002 0.671±0.001 0.380±0.003
CLR 0.267±0.004 0.102±0.002 0.106±0.003 0.118±0.003 0.281±0.002 0.267±0.002 0.126±0.001
ECC 0.562±0.007 0.187±0.003 0.206±0.007 0.327±0.008 0.446±0.003 0.436±0.002 0.173±0.002
RAKEL 0.886±0.004 0.414±0.004 0.353±0.006 0.443±0.006 0.667±0.002 0.666±0.001 0.279±0.003
Comparing Ranking loss ↓
algorithm corel5k rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 tmc2007
ML2 0.163±0.003 0.043±0.001 0.045±0.002 0.067±0.002 0.167±0.001 0.160±0.001 0.048±0.001
BR 0.655±0.004 0.279±0.004 0.251±0.004 0.303±0.004 0.422±0.001 0.424±0.001 0.216±0.003
CLR 0.114±0.002 0.040±0.001 0.042±0.001 0.065±0.002 0.146±0.001 0.139±0.001 0.050±0.001
ECC 0.292±0.003 0.079±0.002 0.096±0.004 0.192±0.003 0.233±0.002 0.229±0.001 0.074±0.001
RAKEL 0.627±0.004 0.243±0.004 0.216±0.004 0.286±0.003 0.414±0.002 0.418±0.001 0.139±0.002
Comparing Average precision ↑
algorithm corel5k rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 tmc2007
ML2 0.297±0.002 0.627±0.003 0.643±0.005 0.596±0.004 0.332±0.002 0.327±0.003 0.813±0.002
BR 0.101±0.003 0.383±0.007 0.434±0.005 0.363±0.004 0.085±0.002 0.078±0.002 0.643±0.002
CLR 0.274±0.002 0.628±0.003 0.641±0.003 0.564±0.004 0.306±0.003 0.303±0.002 0.798±0.002
ECC 0.264±0.003 0.606±0.004 0.616±0.005 0.515±0.004 0.282±0.003 0.276±0.003 0.787±0.002
RAKEL 0.122±0.004 0.436±0.006 0.487±0.005 0.399±0.004 0.103±0.003 0.092±0.003 0.735±0.002
Comparing Macro-averaging AUC ↑
algorithm corel5k rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 tmc2007
ML2 0.667±0.007 0.914±0.008 0.913±0.005 0.911±0.002 0.692±0.003 0.699±0.003 0.926±0.001
BR 0.518±0.001 0.609±0.003 0.599±0.004 0.624±0.002 0.516±0.001 0.519±0.001 0.724±0.002
CLR 0.678±0.005 0.898±0.005 0.884±0.003 0.908±0.002 0.723±0.003 0.739±0.003 0.902±0.001
ECC 0.568±0.003 0.777±0.005 0.763±0.005 0.763±0.003 0.627±0.004 0.633±0.002 0.880±0.002
RAKEL 0.521±0.001 0.637±0.004 0.627±0.004 0.641±0.002 0.523±0.001 0.525±0.001 0.796±0.002

These metrics serve as good indicators for comprehensive
comparative studies as they evaluate the performance of the
learned models from various aspects.

4.2 Experimental Results
Fig. 3(c) shows the numerical labels reconstructed by ML2

using the topological structure transferred from the feature
space in (a) and the signs of the real labels in (b) (note that
only the signs of the label vectors in (b) are used in ML2 to
simulate the real multi-label data). We can see from (b) and
(c) that ML2 indeed effectively recover the label manifold.

Table 2 and 3 report the detailed experimental results of
each comparing algorithm on the regular-scale and large-
scale data sets respectively. On each data set, 50% exam-
ples are randomly sampled without replacement to form the
training set, and the rest 50% examples are used to form

the test set. The sampling process is repeated for ten times
and the average predictive performance across ten train-
ing/testing trials are recorded. For each evaluation metric,
↓ indicates the smaller the better while ↑ indicates the larger
the better. Furthermore, the best performance among the five
comparing algorithms is shown in boldface.

From the result table we can see, on the regular-scale data
sets (Table 2), across all the evaluation metrics, ML2 ranks
1st in 73.8% cases and ranks 2nd in 21.4% cases, and on the
large-scale data sets (Table 3), across all the evaluation met-
rics, ML2 ranks 1st in 57.1% cases and ranks 2nd in 40.5%
cases. Thus ML2 achieves competitive performance against
the well-established multi-label learning algorithms across
extensive benchmark data sets and diverse evaluation met-
rics, which validate the effectiveness of the label manifold
for multi-label learning.



5 Conclusion
This paper explores the manifold in the label space for multi-
label learning. Because the label manifold is not explicit-
ly available from the training examples, we propose a nov-
el method called ML2 to reconstruct and exploit the label
manifold based on the smoothness assumption. Extensive
comparative studies clearly validate the advantage of ML2

against the state-of-the-art multi-label learning approaches.
In the future, we will explore if there exists better ways to
estimate and make use of the label manifold for multi-label
learning.
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