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Distilling Knowledge by Mimicking Features

Guo-Hua Wang™, Yifan Ge™, and Jianxin Wu™, Member, IEEE

Abstract—Knowledge distillation (KD) is a popular method to train efficient networks (“student”) with the help of high-capacity
networks (“teacher”). Traditional methods use the teacher’s soft logits as extra supervision to train the student network. In this paper, we
argue that it is more advantageous to make the student mimic the teacher’s features in the penultimate layer. Not only the student can
directly learn more effective information from the teacher feature, feature mimicking can also be applied for teachers trained without a
softmax layer. Experiments show that it can achieve higher accuracy than traditional KD. To further facilitate feature mimicking, we
decompose a feature vector into the magnitude and the direction. We argue that the teacher should give more freedom to the student
feature’s magnitude, and let the student pay more attention on mimicking the feature direction. To meet this requirement, we propose a
loss term based on locality-sensitive hashing (LSH). With the help of this new loss, our method indeed mimics feature directions more
accurately, relaxes constraints on feature magnitudes, and achieves state-of-the-art distillation accuracy. We provide theoretical
analyses of how LSH facilitates feature direction mimicking, and further extend feature mimicking to multi-label recognition and object
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detection.

Index Terms—Convolutional neural networks, deep learning, knowledge distillation, image classification, object detection

1 INTRODUCTION

RECENTLY, deep learning has achieved remarkable success
in many visual recognition tasks. To deploy deep net-
works in devices with limited resources, more and more
efficient networks have been proposed [1], [2]. Knowledge
distillation (KD) [3] is a popular method to train these effi-
cient networks (named “student”) with the help of high-
capacity networks (named “teacher”).

Initial study of KD [3] used the softmax output of the
teacher network as the extra supervisory information for
training the student network. However, the output of a high-
capacity network is not significantly different from ground-
truth labels. And, due to the existence of the classifier layer,
the softmax output contains less information compared with
the representation in the penultimate layer. These issues hin-
der the performance of a student model. In addition, it is diffi-
cult for KD to distill teacher models trained by unsupervised
or self-supervised learning [4], [5], [6], [7].

Feature distillation has received more and more attention
in recent years [8], [9], [10], [11]. However, previous works
only focused on distilling features in the middle layers [8] or
transforming the features [9]. Few have addressed the prob-
lem of making the student directly mimic the teacher’s feature
in the penultimate layer. Distilling features in the middle
layers suffers from the different architectures between teacher
and student, while transforming the features may lose some
information in the teacher. We believe it is a better way to
directly mimic the feature for knowledge distillation, in which we
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only mimic the feature in the penultimate layer. Compared with
KD, it does not need the student model to learn a classifier
from the teacher. Feature mimicking can be applied to a
teacher trained by unsupervised, metric or self-supervised
learning, and can be easily used when the teacher and student
have different architectures. Furthermore, if the student fea-
tures are the same as the teacher’s, the classification accuracy
will surely be the same, too.

Some reasons may explain why feature mimicking has
not yet been popular in the literature. First, previous work
used the mean squared loss (¢, loss) to distill features. In
this paper, we decompose a feature vector into the magni-
tude and the direction. The ¢, loss focuses on both magni-
tude and direction. But due to the different capacities, the
student cannot mimic the teacher in its entirety. In fact, only
the direction affects the classification result while the mag-
nitude mainly represents the confidence of prediction [12].
We find that different networks often have different feature
magnitudes (cf. Table 2). That inspires us to give more free-
dom to the student feature’s magnitude. One possible
approach to tackle this problem is to distill the feature after
¢y-normalization [9]. However, it will lose all magnitude
information about the teacher feature and make the optimi-
zation difficult [13]. In this paper, we propose a loss term
which focuses on the feature direction and gives more freedom
to its magnitude, which alleviates the shortcomings of the /¢,
loss (cf. Fig. 3).

Second, when teacher and student features have different
dimensionalities, difficulty arises. To solve this problem, we
split the final fully connected (FC) layer of the student net-
work into two FC layers without non-linear activation in-
between. The dimensionality of the first FC layer matches
that of the teacher feature. The two FCs can be merged into
one after training. Hence, no extra parameter or computa-
tion is added in the student’s architecture during inference.

Third, even though the feature structure of the student is
the same as that of the teacher, their feature space may
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Fig. 1. The pipeline of our method. We use a linear embedding layer to make sure the dimensionality of student’s feature is the same as that of the
teacher’s. But, this embedding layer will be absorbed post-training. (This figure is best viewed in color.).

misalign (cf. Fig. 2). If we have the freedom to rotate and
rescale the student’'s feature space, it will align to the
teacher’s feature space better. Thanks to our two FC struc-
ture in the proposed feature mimicking method, we demon-
strate that the first FC layer can transform the student’s
feature space and make feature mimicking easier, which is
particularly important when the student network is initial-
ized using a pretrained model (i.e., the student has formed
a basic feature space to finetune rather than a random fea-
ture space).
Our contributions are as follows.

e We argue that directly mimicking features in the
penultimate layer is advantageous for knowledge
distillation. It produces better performance than dis-
tilling logits after log-softmax (as in [3]). It can be
applied when the teacher and student have different
architectures, while distilling features in the middle
layers cannot.

e We claim that the feature’s direction contains more
effective information than its magnitude, and we
should allow more freedom to the student feature’s
magnitude. We propose a loss term based on Local-
ity-Sensitive Hashing (LSH) [14] to meet this require-
ment, and theoretically show why LSH fits this
purpose.

e We propose a training strategy for mimicking fea-
tures in transfer learning. With a pretrained student,
we first transform its feature space to align to the
teacher’s, then finetune the student on the target
dataset with our loss function. Our method is flexible
and handles multi-label recognition well, while
existing KD methods are difficult to apply to multi-
label problems.

Our feature mimicking framework achieves state-of-the-
art results on both single-label and multi-label recognition,
and object detection tasks.

The rest of this paper is organized as follows. First, we
review the related work in Section 2. Then, we introduce
our method for feature mimicking in Section 3, and mathe-
matically analyze the effectiveness of it in Section 4. Experi-
mental results are reported and analyzed in Section 5.
Finally, Section 6 concludes this paper.

2 RELATED WORK

Knowledge distillation was first introduced in [3], which pro-
posed to use the teacher’s soft logits after log-softmax as

extra supervision to train the student. FitNet [8] is the first
work to distill the intermediate feature maps between
teacher and student. Inspired by this, a variety of other fea-
ture-based knowledge distillation methods have been pro-
posed. AT [15] transfers the teacher knowledge to student
by the spatial attention maps. AB [16] proposes a knowl-
edge transfer method via distillation of activation bound-
aries formed by hidden neurons. FitNet, AT and AB focus
on activation maps of the middle layers, and it is difficult to
apply them on cross-architecture settings. SP [17] considers
pairwise similarities of different features instead of mimick-
ing the teacher’s representation space. FSP [18] computes
the inner product between features from two layers and
treats it as the extra information to teach student. FT [9]
introduces a paraphraser to compress the teacher feature
and uses the translator located at the student network to
extract the student factors, then teaches the student by mak-
ing student factors mimic teacher’s compressed features.
These methods transform the teacher’s feature into other
forms, which will lose some information in teacher features.
In contrast, feature mimicking in the penultimate layer can
apply on arbitrary teacher/student combinations and carry
all information from the teacher.

Recently, CRD [10] and SSKD [11] take advantage of con-
trastive learning and transfer the structural knowledge of the
teacher network to the student. In this paper, we argue that
we can also achieve state-of-the-art by only mimicking fea-
tures without explicitly considering the structural knowledge.

Object detection is a fundamental task in computer vision.
Several previous works study knowledge distillation on the
object detection task. ROI-mimic [19] mimics the features
after ROI pooling. Fine-grained [20] uses the ground truth
bounding box to generate the foreground mask and distill
the foreground features on the feature map. PAD [21] intro-
duces the adaptive sample weighting to improve these dis-
tillation methods. In this paper, we will show that
mimicking features in the penultimate layer works better.

Locality-sensitive hashing (LSH) was first introduced in
[22], [23]. With the help of p-stable distributions, [14]
extended the algorithm to the ¢, norm. With the rise of deep
learning, hashing methods were widely used in image
retrieval [24], [25], [26], [27]. Most of them focused on how
to learn good hash functions to transform images into com-
pact codes. Different from that, we utilized LSH to help the
student network to learn from the teacher network. To the
best of our knowledge, we are the first to propose the use of
LSH in distilling knowledge.
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3 FEATURE MIMICKING FOR KNOWLEDGE
DISTILLATION

Fig. 1 shows the pipeline of our method. Given an image z,
the teacher backbone network extracts feature f,, in which
fi € R” is the penultimate layer feature (after the global
average pooling and before the final classifier or detection
head). The student backbone network extracts feature f,. To
make the dimensionalities of f, and f, match, we add a lin-
ear embedding layer after the student backbone. Section 3.1
will introduce this module in detail.

Three losses are used. L. is the regular cross-entropy
loss between the student output and the ground truth
label of z. £,,s. and L, are used to make the student fea-
ture mimic the teacher’s. More details about these two
losses can be found in Section 3.2. More analyses are in
Sections 3.3 and 3.4. During training, modules with green
boxes (student backbone, linear embedding and classifier)
in Fig. 1 need to be learned by back-propagation. Parame-
ters in the teacher backbone and locality-sensitive hashing
will not change after initialization. Finally, Section 3.5 dis-
cusses how to initialize our framework. We leave theoreti-
cal results for feature mimicking to Section 4.

3.1 The Linear Embedding Layer

When the dimensionality of the student’s feature is different
from that of the teacher’s, we add a linear embedding layer
before the student’s classifier layer. Assume the dimension-
ality of student’s features and teacher’s are D, and D,
respectively, the embedding layer is defined as

fel(f) =Wif+b, (1)

where W, € RPs*Pt and b, € R”. The main advantage of
this approach is that the embedding layer can be merged
into the classifier without adding parameters or compu-
tation post-training. Assume the classifier is defined as

fe2(f) =W3f +by, 2)

where W5 € RP*¢ and b, € RC. Then, the final classifier for
student can be computed by

fcs(f) = fCQS(fCLS(f)) (3)
= (WiW,)' f + (Wiby +by), 4)

felg and fe2, can be merged by setting the weights and
bias for the final classifier as W;W, and Wb, + by,
respectively.

This linear embedding layer shares similar idea as
FSKD [28]. FSKD adds a 1 x 1 conv at the end of each block
of the student network and proves that the 1 x 1 conv can
be merged into the previous convolution layer. However,
FSKD requires the teacher and student to share similar
architectures, and adds more parameters during training.
Our method is more efficient and can be applied with differ-
ent teacher/student architectures.

Even when the dimensionality of the student’s feature is
the same as that of the teacher’s, the linear embedding layer
may still be necessary. Because the teacher and the student
may have significantly different network architectures, their
feature spaces may be misaligned. The teacher and the
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student’s features

Fig. 2. Anillustration of the feature space misalignment issue. The points
denote the features, and different colors with different shapes represent
different classes. The student’s feature space needs to rotate to align to
the teacher’s. (This figure is best viewed in color.).

student feature spaces, even when they encode the same
semantic information, can still be subject to differences
caused by transformations such as rotation and scaling.
Fig. 2 illustrates the feature space misalignment issue.
Assume the penultimate layer feature is denoted by f and
the classifier's parameters are W and b, respectively. The
prediction can be computed by

p=WTf+b. (5)

Given any orthogonal matrix R, we have

p=W'R'Rf+b (6)
=WIif.+b, )

where W, and f, are RW and Rf, respectively. That is, the
feature space can be rotated without changing the
prediction.

Our linear embedding layer fcl; can learn any linear
transformation (such as the above rotation R) to align the
student’s feature space to that of the teacher’s. If we let the
student mimic the teacher’s features directly without align-
ing their feature spaces, the performance will be lower,
especially when the student has been pretrained. Experi-
mental validation of the importance of feature space align-
ment can be found in Section 5.3.

3.2 The LSH Module
To mimic the teacher’s feature, £, and L, are used in our
framework. £, is defined as

1 &
‘Cmse :njgl‘ft(x7) *f9($7)||§, ®

where f,(z;) and f,(z;) represent the teacher and student
features for the ith image in the training set, and D
denotes the dimensionality of the feature (after the linear
embedding fcl,). Note that £,,,. addresses both feature
direction and magnitude. On the contrary, we propose
to use locality-sensitive hashing (LSH) [14] to give the
student more freedom with regard to its magnitude, but
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Fig. 3. An illustration of the LSH loss. f, and f, denote a student and a
teacher feature vector for the same input image, respectively. h repre-
sents the hash function constraints. These constraints form a small poly-
hedron (the shaded region) and 6 is the maximum angle between any
two vectors in this polyhedron. Magnitudes of these features, however,
can alter with greater freedom.

let the student concentrate more on mimicking the fea-
ture direction.

Fig. 3 shows an illustration for £;g,. In our LSH module,
each hash function can be considered as a linear constraint.
Many constraints will divide the feature space into a lot of
polyhedra, and in general each polyhedron will be small.
The LSH loss will encourage f, and f, to fall into the same
polyhedron. Hence, more hash functions will result in
smaller polyhedra, which in turn means that the angle
between f, and f, will be small (upper bounded by 6 in
Fig. 3, which is small itself because the polyhedron is small
compared to the feature magnitudes.) In short, the LSH
module encourages f, and f, to have similar directions, but
relaxes constraints on their magnitudes.

LSH aims at hashing the points into bins by several hash
functions to ensure that, for each function, near points will
fall into the same bin with high probability. In our frame-
work, we use the hash family based on the Gaussian distri-
bution which is a 2-stable distribution, defined as

hus(f) = f”f“’J 7 o)

r

where f € R” is the feature, w € R” is a random vector
whose entries are sampled from a Guassian distribution, b
is a real number chosen uniformly from the range [0, 7], r is
the length of each bin, and | -] is the floor function.

Our loss term L, encourages the student feature to fall
into the same bin as that of the teacher’s. According to the
theory of locality-sensitive hashing, for two vectors f,, f,
the probability of collision decreases monotonically with
the distance between f, and f,. Therefore, hw;(f,) =
hw s (f,) (which will result in a low value of £;y,) is a neces-
sary condition for || f, — f,|l, = 0. Hence, it is reasonable to
force the student to mimic the teacher by minimizing L.

In our framework, we use N hash functions with the
form in Equation (9). The locality-sensitive hashing mod-
ule will generate NV hash codes for each feature. 0 is used
as the threshold to chop the real line. Therefore, the LSH
module can be implemented by a FC layer and a signum
function

hws(f) = sign(W'f +b), (10)
1, ifz > 0

i = 11

sign(w) {07 otherwise , )

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

in which f € R” is the feature, W € R”*V is the weights
whose entries are sampled from a Guassian distribution
and b € RV is the bias. Equation (10) generates N binary
codes for teacher feature f,, and the hash code for stu-
dent feature is expected to be the same as teacher’s.
We enforce this requirement by learning a classification prob-
lem, and the binary cross entropy loss is to be mini-
mized, i.e.,

h =sign(W'f, +b),
p=c(W'f,+b),

1 n N
Ly = _TNZ > [hjlogp; + (1 = hj)log (1 —py)], (14)
i=1 j=1

12)
13)

where o is the sigmoid function o(z) = = L __
. . exp(—7)
are the jth entry of h and p, respectively.

Finally, inspired by [29], we only distill the features
which the teacher classifies correctly. To reduce the effect of
randomness in the locality-sensitive hashing module, the
average of the last 10 epochs’” models during training is
used as our final model.

’ h]' and V2

3.3 Experimental Analysis

We use experiments to demonstrate the advantage of giving
the student more freedom to the feature magnitude and
making it focus on mimicking the feature direction.

Table 1 shows the experimental results. The models
vggl3 and vgg8 share similar architectures, while ResNet50
and MobileNetV2 have different architectures. “CE”
denotes training the student by only the cross entropy loss
without a teacher. We find that | f,||, is very different from
I £:llo- More statistics on || f||, of different models can be
found in Table 2. When knowledge distillation is not used,
teacher and student features have very different directions
as there are large angles between them, especially when
their architectures are different.

When the /; loss (¢, + CE) is used for feature mimicking,
the student features are encouraged to be similar to the
teacher features in both magnitudes and angles, and the stu-
dent accuracy is higher.

The proposed LSH loss gives the student more freedom to
its feature magnitude. With the LSH loss (LSH + CE), vgg8
gets a larger feature magnitude while MobileNetV2 gets a
smaller feature magnitude than that of CE. For vgg8,
although 6 of LSH + CE is a little larger than that of ¢, +
CE, the accuracy of LSH + CE is higher, which shows the
benefit of giving more freedom to the feature magnitude.
For MobileNetV2, LSH + CE achieves both a smaller 6
and better performance.

Finally, the LSH loss and the ¢ loss can be combined to
help each other, and result in both smaller 6 (i.e., similar
directions) and better accuracy rates.

In Section 4, we will analyze the LSH module
theoretically.

3.4 Ensemble All Losses
The final loss consists of two terms, the classification and
the feature mimicking losses. The regular cross-entropy loss
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TABLE 1
The Difference Between Teacher Features and Student
Features
Teacher vggl3 ResNet50
Student vgeg8 MobileNetV2
dataset | train test ‘ train test
\ [| fell2 \ 12.64 11.83 \ 15.52  15.03
[[fsll2 | 16.50 16.16 | 16.64 16.33
CE 0 69.49° 68.00°| 90.09° 90.07°
Acc@1 | 99.19 70.72 | 90.31 64.36
[[fsll2 | 12.53 12.06 | 13.82 13.59
> + CE 0 26.86° 29.90°| 32.04° 33.25°
Acc@1 | 98.26 72.33 | 89.07 65.73
[ fsll2 | 24.74 23.73 9.69 9.60
LSH + CE 0 28.22° 31.00°| 31.28° 32.29°
Acc@1 | 97.60 72.69 | 84.11 67.02
[[fsll2 | 15.22  14.50 9.94 9.83
LSH+/42+CE [4 25.43° 28.99°| 29.73° 30.80°
Acc@1 | 97.72 73.68 | 85.76 68.99

The statistics were estimated average values on the training and testing sets of
CIFAR-100. || f,|l, and | f,||, denote the 2-norm of teacher and student fea-
tures, respectively. 0 represents the average angle between them. Acc@1 is the
accuracy (%) of the student model.

TABLE 2

The Networks Used in Our Experiments
role model D std 1 £1lo
Teacher WRN-40-2 128 0.1713 13.64
resnet56 64 0.2415 18.08
resnet110 64 0.2262 20.13
resnet32x4 256 0.1100 12.06
vggl3 512 0.0749 12.64
ResNet50 2048 0.0381 15.52
Student WRN-16-2 128 0.2035 15.07
WRN-40-1 64 0.2638 14.29
resnet20 64 0.2704 14.47
resnet32 64 0.2563 16.06
resnet8x4 256 0.1573 16.92
vgg8 512 0.0980 16.50
MobileNetV2 640 0.0579 15.82
ShuffleNetV1 960 0.0642 17.26
ShuffleNetV2 1024 0.0625 15.70
Teacher ResNet34 512 0.0640 30.75
Student ResNet18 512 0.0695 29.58

ResNet34 and ResNet18 were used on ImageNet, while other models were used
on CIFAR-100. D denotes the dimensionality of the feature before the final
classifier. std represents the standard deviation of the final classifier’s weight
with vanilla training. || f||, is the mean of the 2-norm of features in the train-
ing set.

L. is used as the classification loss. We use both £,,,. and
Ly, as the feature mimicking loss. Different from CRD [10]
and SSKD [11], our method does not need the knowledge
distillation loss [3] (KL-divergence between teacher and stu-
dent logits with temperature). The final loss is

L=L.+ lg(ﬁmse + ['lsh) ) (15)
where g is the balancing weight. Therefore, if the mean
square loss is already used in other researches (e.g., detec-
tion, segmentation), our LSH module can be added directly
without introducing extra hyperparameter.
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Fig. 4. lllustration of different initialization for the bias. Red lines denote
the hash function constraints, while blue points represent teacher fea-
tures. (a), (b), and (c) show the bias initialized by 0, the median, or the
mean of the teacher hash values, respectively. This figure is best viewed
in color and zoomed in.

3.5 Model Initialization
The LSH module needs to be initialized before the end-to-
end training. In the LSH module, the entries of W are sam-
pled from a Guassian distribution. We always set 0 as its
mean and treat the standard deviation (stdp,sn) as a hyper-
parameter. To find a good default value for stdjqs,, we col-
lect statistics about the standard deviation (std) of the final
classifier’s weight (W’) with vanilla training (cf. Table 2).
Assume W' = [wW/'|, W'5,..., W', where w; € R” and c¢ is
the number of categories, the expectation of ||w’||, can be
roughly calculated by

E(|[w[l,) = E( w’Tw’) ~ std x VD, (16)
where the last transition holds because we noticed that the
mean of W' is roughly zero. There is a tendency that
E(||w'||,) does not change drastically, and std will become
small when D is large. These phenomena inspire us to
choose stdj,s, according to D. We also find that directly
using the std of teacher’s final classifier's weight is a good
default value for stdj,ugp,.

b is the bias in the LSH module. As shown in Fig. 4, the
bias can be initialized by 0, the median, or the mean of the
teacher hash values. Because BCE loss is applied, to make
the binary classification problem balanced, we use the
median of the teacher hash values as the bias in our LSH
module. We also tried to use the mean of the teacher hash
values or simply set b = 0. Later we will exhibit in Tables 7
and 8 the experimental results when using different initiali-
zation for the bias. These results show that our method is
not sensitive to the initialization of b.

4 THEORETICAL ANALYSES

Now we will analyze why the LSH loss is sensitive to the
feature’s direction but not to the feature’s magnitude. First,
the following Claim 1 says that if the teacher features are
scaled, L5, will not change, i.e., £, is not sensitive to the
teacher feature’s magnitude.

Claim 1. For a given scale s > 0, Lisn(sf, fs) = Lisn(f1, fs)
for arbitrary f,.

Next, the following Claim 2 states that when f, and f,
have the same direction, £;;;, will encourage f, to be longer.

Claim 2. Assume the direction of f is the same as that of f,, and
b =0 in LSH. For a given scale s > 1, then Ly (f,,sf,) <
Cin( [, f,) always holds.

Finally, the following Claims 3 and 4 are the most impor-
tant conclusions, which explain why our LSH loss can help
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Fig. 5. The cumulative probability of the angle with D = 2048, where D
and N denote the feature dimensionality and the number of hash func-
tions, respectively. With N becoming larger, the angle between the stu-
dent feature and the teacher feature will become smaller with high
probability. This figure is best viewed in color and zoomed in.

the student to mimic the direction of teacher features.
Claim 3 computes the probability of the LSH loss being
small (less than log 2) when we are given /(f,, f,), the angle
between teacher and student features. Hence, if the angle
between f, and f, is smaller, the LSH loss will become small
with higher probability.

Claim 4 gives the probability of /(f,, f,) < e under the
constraint that £, is small. Using the probability formula
in Claim 4, we can numerically calculate the cumulative
probability of the angle when L;,, meets the condition (cf.
Fig. 5). From this figure, we can conclude that if more hash-
ing functions are used, the direction of f, will approach that
of f, with higher probability.

Claim 3. Suppose b = 0 in LSH, and f_ and f, follow the stan-
dard Gaussian distribution. Then

Pril; < log2| Af, f.) =0} =12, (17

will hold, where /(f,, f,) denotes the angle between f, and f,,
and

li= — hjlog (pj) — (1 — hj)log (1 — pj) . (18)

Claim 4. Suppose b = 0 in LSH, and f, and f, follow the stan-
dard Gaussian distribution. Then, for any 0 < e < m, the
equation

"
Pr{[(ft,fs) < €] /\(lj < log2)}

J=1

(-9 sinP20)) a0
(@ =9"sin220)) a0

(19)

will hold.

The proof of all Claims are provided in the
appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2021.3103973, to this paper. Utilizing these
results, we numerically calculate the probability in Claim 4
for different N values. As Fig. 5 shows, when the number of
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hash function N grows, the angle between teacher and stu-
dent features indeed converge to 0. That is, our LSH loss is
effective in mimicking the teacher feature’s direction.

5 EXPERIMENTS

In this section, we evaluate the proposed feature mimick-
ing framework on single-label classification, multi-label
recognition, and object detection. For single-label classifi-
cation, we use the CIFAR-100 [30] and ImageNet [31]
datasets, which are usually used as benchmarks for
knowledge distillation. CIFAR-100 contains 32 x 32 natu-
ral images from 100 categories, which contains 50000
training images and 10000 testing images. ImageNet is a
large-scale dataset with natural color images from 1000
categories. Each category typically has 1300 images for
training and 50 for evaluation.

For CIFAR-100, we used the code provided by CRD [10]."
For a fair comparison, we used the same hyperparameters
of CRD in our experiments, such as the learning rate, batch
size and epoch. For ImageNet, we followed the standard
PyTorch example code and trained 100 epochs (following
CRD)

5.1 Ablation Studies

We first study the effects of the loss functions, hyperpara-
meters in LSH, and model initialization.

5.1.1 The Loss Functions

First, we conduct ablation studies on the loss functions. Our
final loss contains L,,,. and L;,,. We will use only one of
them to see their individual effects.

Tables 3 and 4 summarize the results. We used “KD” [3]
as the baseline method. Note that all experiments used the
classification loss L.. “¢y loss” denotes only using L.,
while “LSH loss” represent only using L. “¢> loss + LSH
loss” combines the £, and L;,, as in Equation (15). To bal-
ance the feature mimicking loss and classification loss,
was set as 6. In these tables, we also show the relative
improvement as a percentage. Accuracy of the student and
the teacher are treated as 0 and 100 percent, respectively.
For example, in the last column of Table 4, the student and
teacher accuracy are 70.50 and 75.61, while the proposed “/,
loss + LSH loss” is 76.25, hence the relative improvement is
76.25-70.50 _ 1139,
75.61—70.50

When the teacher and student share similar architec-
tures, only using the ¢, loss can surpass the standard KD
significantly, which demonstrates the advantage of fea-
ture mimicking for knowledge distillation. When only
applying the LSH loss we proposed, the performance of
most teacher/student combinations are better than that of
the ¢, loss, showing the benefit of giving the student
more freedom to the feature magnitude and letting it
focus on mimicking the feature direction. Combining ¢,
and LSH losses can boost the performance. We believe it
is because the LSH loss can alleviate the shortcomings of
the ¢ loss, and the LSH loss can also benefit from the /5
loss.

1. https:/ / github.com/HobbitLong/RepDistiller
2. https:/ /github.com /pytorch/examples/tree/master/imagenet
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TABLE 3

Test Accuracy (%) of the Student Network on CIFAR-100
Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 resnet32x4 vggl3
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8x4 vge8
Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36
KD 74.92(71% 1) 73.54(43% 1) 70.66(49% 1) 70.67(31% 1) 73.08(61% 1) 73.33(12% 1) 72.98(61% 1)
5 loss 75.53(97% 1) 74.33(65% 1) T71.42(72% 1) 71.30(43% 1) 73.81(84% 1) 74.01(22% 1) 72.33(46% 1)
LSH loss 75.61(100% 1) 74.20(61% 1) 71.51(75% 1) 71.73(51% 1) 73.69(80% 1) 73.49(14% 1) 72.69(54% 1)
lyloss + LSH loss  75.62 (100% 1) 74.54(71% 1) 71.65(79% 1) 71.39(44% 1) 73.99(90% 1) 73.37(13% 1) 73.68(78% 1)
The teacher and the student share similar architectures.

TABLE 4

Test Accuracy (%) of the Student Network on CIFAR-100
Teacher vggl3 ResNet50 ResNet50 resnet32x4 resnet32x4 WRN-40-2
Student MobileNetV2 MobileNetV2 vggs ShuffleNetV1 ShuffleNetV2 ShuffleNetV1
Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50
KD 67.37(28% 1) 67.35(19% 1) 73.81(38% 1) 74.07 (40% 1) 74.45 (35% 1) 74.83 (85% 1)
5 loss 66.98 (24% 1) 65.73 (8% 1) 71.90 (17% 1) 74.65 (47% 1) 75.73(51% 1) 75.37(95% 1)
LSH loss 67.48(29% 1) 67.02 (16% 1) 74.15 (42% 1) 75.49 (56% 1) 75.56 (49% 1) 75.89 (105% 1)
£, loss + LSH loss 67.16 (25% 1) 68.99 (30% 1) 74.89 (50% 1) 75.36 (54% 1) 76.70 (64% 1) 76.25(113% 1)

The teacher and the student use different architectures.

When the teacher and student use different architectures,
the difference of their accuracy is larger than that in the sim-
ilar-architecture settings, and their features are more differ-
ent. Due to the limited capacity of student networks, it is
difficult for the student to mimic both features’” directions
and magnitudes. The experimental results in Table 4 show
that only using £y, outperforms using L, in most cases,
which justifies that feature directions have more effective
information to boost the student performance, and that we
should make the student pay more attention to the feature
direction. Combining ¢, and LSH losses is consistently bet-
ter than only applying the /5 loss. It demonstrates that fea-
ture mimicking indeed benefits from giving more freedom
to the student feature’s magnitude.

Furthermore, by comparing the relative improvement
numbers in Tables 3 and 4, it is obvious that knowledge dis-
tillation across different network architectures is a more
challenging task than distilling between similar-architecture
networks. Hence, it is not surprising that differences among
the ¢ loss, the proposed LSH loss, and the “¢y loss + LSH
loss” are relatively small in Table 3. On the other hand,
Table 4 confirms that the proposed LSH loss is supervisor to
the /5 loss, which also shows that the combination of these
two are complementary in feature mimicking. For example,
when we distill knowledge from ResNet50 to MobileNetV2,
the combined relative improvement (30 percent) is even
higher than the sum of both (8% + 16%).

5.1.2 Hyperparameters in the LSH Module

Next, we study the effect of hyperparameters in the LSH
loss. There are three hyperparameters in locality-sensitive
hashing. N denotes the number of hashing functions.
stdyqsn represents the standard deviation of the Gaussian
sampler. Note that we always use 0 as the mean of the

Gaussian sampler. g is the balancing weight for both £,
and ‘Cmse-

Tables 5 and 6 summarize the results. First, when
stdpesn = 1 and N = 2048, different teacher/student combi-
nations achieve the best results with different . So it is bet-
ter to use a validation set to tune this hyperparameter.
Limited by computation resources, we simply used g =6
for all experiments on CIFAR-100. Second, the value of
stdpash, also affect the performance. But we find that it is less
sensitive than f. Third, a larger N may reduce the random-
ness in LSH. Experiments show that setting N = 2048 is
good enough. Overall, if applying our method to other
problems, we suggest that NV = 2048 or N = 4D, stdpasy, = 1
or stdy,, = std, and finally using a validation set to tune f.

5.1.3 Different Model Initialization

We study different initialization for bias in the LSH module.
By default, the bias is initialized as the median of teacher
hashing codes to balance the binary classification problem.
We also tried to use the mean of teacher hashing codes or 0
to initialize the bias. Tables 7 and 8 present the results. We
find that knowledge distillation is not sensitive to the ini-
tialization of bias. When apply our method on large-scale
datasets (like ImageNet), we used 0 to initialize the bias
because it is difficult to compute the median.

5.2 Single-Label Classification

Tables 9 and 10 compare our method with other knowledge
distillation approaches on the CIFAR-100 benchmark. We
simply set 8 =6, stdj., =1 and N = 2048 for all experi-
ments. And for a fair comparison, we used the same teacher
networks as CRD [10]. Different from SSKD [11], we only
used self-supervised learning [5] to train student networks
and got the backbone weights to initialize our framework.

Authorized licensed use limited to: Hohai University Library. Downloaded on October 14,2023 at 09:36:07 UTC from IEEE Xplore. Restrictions apply.



8190 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022
TABLE 5
Test Accuracy (%) of the Student Network on CIFAR-100 Using Different Hyperparameters (B, stdjqsn, N)
Teacher WRN-40-2 WRN-40-2 resnetb6 resnetll0 resnetll0 resnet32x4  vggl3
Student WRN-16-2  WRN-40-1  resnet20 resnet20 resnet32 resnet8x4 vgg8
stdy 0.17 0.17 0.24 0.23 0.23 0.11 0.07
stds 0.20 0.26 0.27 0.27 0.26 0.16 0.10
Dy 128 128 64 64 64 256 512
Ds 128 64 64 64 64 256 512
(1,1,2048) 75.33 73.50 71.25 71.17 73.37 73.64 73.06
(3,1,2048) 75.47 74.16 71.70 71.68 73.87 74.11 72.91
(5,1,2048) 75.99 74.43 71.41 71.66 73.32 73.66 73.77
(6,1,2048) 75.62 74.54 71.65 71.39 73.99 73.37 73.68
(7,1,2048) 76.34 74.36 71.18 71.78 73.96 73.70 73.89
(6, std¢, 2048) 76.11 74.42 70.96 71.75 74.00 73.91 73.57
(6, stds, 2048) 75.53 74.25 71.43 71.60 74.19 73.82 73.61
(6, std¢, 4 x D) 76.43 74.15 71.27 71.13 73.55 74.13 73.57
(6, stdt, 32 x Dy) 75.84 74.51 70.96 71.75 74.00 73.77 73.25
The teacher and the student share similar architectures.
TABLE 6
Test Accuracy (%) of the Student Network on CIFAR-100 Using Different Hyperparameters (B, stdjqsn, N)
Teacher vggl3 ResNet50 ResNet50 resnet32x4 resnet32x4 WRN-40-2
Student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1
std, 0.07 0.04 0.04 0.11 0.11 0.17
stds 0.06 0.06 0.10 0.06 0.06 0.06
Dy 512 2048 2048 256 256 128
Dy 640 640 512 960 1024 960
(1,1,2048) 66.82 65.79 72.12 75.23 75.42 74.98
(3,1,2048) 67.95 67.33 73.47 74.94 76.12 76.17
(5,1,2048) 68.01 67.60 74.64 75.38 75.56 76.06
(6,1,2048) 67.16 68.99 74.89 75.36 76.70 76.25
(7,1,2048) 67.88 69.20 74.43 75.25 76.70 76.35
(6, std;, 2048) 68.12 67.57 72.89 75.22 76.52 75.63
(6, stds, 2048) 67.77 67.47 73.68 74.93 76.27 75.70
(6, std,4 x Dy) 68.12 67.95 72.80 75.02 76.46 76.36
(6, std;, 32 x Dy) 67.78 67.33 72.76 75.36 76.25 75.83
The teacher and the student use different architectures.
TABLE 7
Test Accuracy (%) of the Student Network on CIFAR-100 With Different Initializations of Bias in the LSH Module
Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 resnet32x4 vggl3
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8x4 vggs
KD 74.92 73.54 70.66 70.67 73.08 73.33 72.98
0 76.04 74.46 71.16 71.79 74.18 73.70 73.92
mean 75.39 74.11 71.52 70.95 73.85 73.64 73.98
median 75.62 74.54 71.65 71.39 73.99 73.37 73.68

The teacher and the student share similar architectures. Bold denotes the best results.

Table 9 presents the results when the teacher and student
share similar architecture. Note that “Ours (1FC)” removed
the linear embedding layer, which is possible because
teacher and student features have the same dimensionality.
Our method surpasses CRD+KD [10] on most teacher/stu-
dent combinations. Note that our method did not use the
original KD [3] loss, and is thus more flexible. Compared
with SSKD [11], our method outperforms on five teacher/
student combinations. And our method can be combined
with SSKD (“Ours + SSKD”), which consistently

outperforms SSKD. We simply set g = 0.01, stdjqe, = 1, N =
2048 and added our loss terms into the SSKD framework.
Table 10 summarizes the results when the architectures of
teacher and student are different. Our method outperformed
CRD+KD [10] on the majority of teacher/student combina-
tions, but slightly worse than SSKD [11]. These results sug-
gest that with different teacher/student architectures, self-
supervised learning is critical for KD (because SSKD outper-
formed other methods). However, note that our method can
be combined with SSKD, which consistently outperforms
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TABLE 8
Test Accuracy (%) of the Student Network on CIFAR-100 With Different Initializations of Bias in the LSH Module
Teacher vggl3 ResNet50 ResNet50 resnet32x4 resnet32x4 WRN-40-2
Student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1
KD 67.37 67.35 73.81 74.07 74.45 74.83
0 67.14 68.64 74.25 75.57 76.71 75.76
mean 68.16 68.07 74.54 75.55 75.32 75.99
median 67.16 68.99 74.89 75.36 76.70 76.25
The teacher and student use different architectures. Bold denotes the best results.
TABLE 9
Test Accuracy (%) of the Student Network on CIFAR-100
Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 resnet32x4 vggl3
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8x4 vgg8
Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36
KD [3] 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet [8] 73.58 72.24 69.21 68.99 71.06 73.50 71.02
AT [15] 74.08 72.77 70.55 70.22 72.31 73.44 7143
SP [17] 73.83 7243 69.67 70.04 72.69 72.94 72.68
AB [16] 72.50 72.38 69.47 69.53 70.98 73.17 70.94
FT [9] 73.25 71.59 69.84 70.22 72.37 72.86 70.58
FSP [18] 7291 n/a 69.65 70.11 71.89 72.62 70.23
CRD [10] 75.48 74.14 71.16 71.46 73.48 75.51 73.94
CRD+KD [10] 75.64 74.38 71.63 71.56 73.75 75.46 74.29
Ours (1FC) 75.99 - 71.39 71.64 73.90 73.40 73.78
Ours 76.41 74.64 71.44 71.48 73.59 76.75 74.63
SSKD* [11] 75.55 75.50 71.00 71.27 73.60 76.13 74.90
Ours + SSKD 75.89 75.72 71.29 71.34 73.68 76.95 75.19

The teacher and the student share similar architectures. We denote by * methods where we re-run three times using author-provided code. And the results of our

method were run by five times. Bold denotes the best results.

TABLE 10
Test Accuracy (%) of the Student Network on CIFAR-100

Teacher vggl3 ResNet50 ResNet50 resnet32x4 resnet32x4 WRN-40-2
Student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1
Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50
KD [3] 67.37 67.35 73.81 74.07 74.45 74.83
FitNet [8] 64.14 63.16 70.69 73.59 73.54 73.73
AT [15] 59.40 58.58 71.84 71.73 72.73 73.32

SP [17] 66.30 68.08 73.34 73.48 74.56 74.52
AB [16] 66.06 67.20 70.65 73.55 74.31 73.34

FT [9] 61.78 60.99 70.29 71.75 72.50 72.03
CRD [10] 69.73 69.11 74.30 75.11 75.65 76.05
CRD+KD [10] 69.94 69.54 74.58 75.12 76.05 76.27
Ours 69.42 69.64 74.74 77.06 77.08 77.57
SSKD* [11] 71.24 71.81 75.71 78.18 78.75 77.30
Ours+SSKD 71.77 72.38 76.13 78.32 79.01 77.46

The architectures of teacher and student are different. We denote by * methods where we re-run three times using author-provided code. And the results of our

method were run by five times. Bold denotes the best results.

SSKD. Same as that on similar architecture, we simply set
B =0.01, stdp.sn, = 1, N = 2048 and added our loss terms
into the SSKD framework.

Table 11 summarizes the results on ImageNet. The
hyperparameters in our method are g =5, stdy.s, = std,
and N = 2048. Note that different from CRD + KD and

SSKD, we did not use the standard KD loss [3] to boost the
performance. Only using the ¢, loss to force the student fea-
tures to mimic the teacher features outperforms CRD, which
once again supports the validity of our proposed feature
mimicking. Combining the ¢, and LSH losses further boosts
the performance by a significant margin and achieves the
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TABLE 11
Top-1 and Top-5 Error Rates (%) on the ImageNet Validation Set
Teacher Student CC [32] SP [17] Online-KD [33] KD [3] AT [15] CRD [10] CRD+KD SSKD [11] Ours (¢5) Ours (¢5 + LSH)
Top-1 26.70 3025 30.04 29.38 29.45 29.34 29.30 28.83 28.62 28.38 28.61 28.28
Top-5 858 10.93 10.83 10.20 10.41 10.12  10.00 9.87 9.51 9.33 9.61 9.59

The teacher and student are ResNet-34 and ResNet-18, respectively. Bold denotes the best results.

state-of-the-art performance, which further supports the
proposed LSH loss.

5.3 Multi-Label Classification

We consider two typical multi-label classification tasks, i.e.,
VOC2007 [34] and MS-COCO [35]. VOC2007 contains a
train-val set of 5011 images and a test set of 4952 images.
And MS-COCO contains 82081 images in the training set
and 40137 images for validation. We resize all images into a
fixed size (448 x 448) to train the networks. And the data
augmentation consist of random horizontal flips and color
jittering. The backbone networks contain MobileNetV2,
ResNet18, ResNet34, ResNet50 and ResNetl01. The net-
works are all pre-trained on ImageNet and finetuned on the
multi-label classification dataset with stochastic gradient
descent (SGD) for 60 epochs in total. The binary cross
entropy (BCE) loss is used to finetune the network. We
employ the mean average precision (mAP) to evaluate all
the methods. Note that multi-label recognition is not a typi-
cal application of KD because existing KD methods rely on the
soft logits, which do not exist in multi-label scenarios. The pro-
posed feature mimicking method, however, is flexible and
handles multi-label distillation well.

First, we conduct experiments on VOC2007 using
ResNet34 as teacher and ResNet18 as student to demonstrate
that feature space alignment is necessary and important. The
teacher ResNet34 is first trained on ImageNet and then fine-
tuned on VOC2007. It achieves 91.69% mAP as in Table 12.
The student ResNet18 achieves 89.15% mAP. And in Sec-
tion 5.2, we have trained ResNet18 supervised by ResNet34
on ImageNet. This model is denoted as “ResNet18 (pre-
trained by KD)” and achieves 89.88% mAP. When finetuned
on VOC2007 supervised by the teacher with the ¢ loss,
ResNet18 achieves a worse performance (88.75 percent) than
baseline, which we believe is because the feature spaces of
the teacher and student do not align well. If we use ResNet18
pretrained by KD whose feature space aligns to the teacher’s,
the student can be improved to 90.89 percent. With the 2FC
structure, the first linear layer can transform the student fea-
ture space to align to the teacher’s. It alleviates the feature

TABLE 12
Test mAP (%) on Pascal VOC2007

Teacher ResNet34 ResNet34

Student ResNet18 ResNet18 (pretrained by KD)
Teacher 91.69 91.69

Student 89.15 89.88

KD 89.26 (4% 1) 89.85 (2% |)

l, (1FC) 88.75 (20% |) 90.89 (56% 1)

45 2FC) 89.98 (33% 1) 90.77 (49% 1)

space misalignment issue and achieve a better performance
(89.98 percent) than baseline. ResNet18 pretrained by KD
with 2FC achieves a worse performance (90.77 percent) than
that with 1FC. That demonstrates it does not need the first
linear layer to transform the feature space.

Although the backbone pretrained by KD on a large scale
dataset will transfer better and easily mimic the teacher’s fea-
tures during finetuning, it is expensive to pretrain the stu-
dent on a large scale dataset in many cases. Hence, we
propose a simple but effective approach to alleviate the fea-
ture space misalignment problem. We finetune the student
by two stages. In the first stage, we fix the weights in the stu-
dent backbone and only optimize the linear embedding layer
with the feature mimicking loss functions. This stage aims at
transform the student feature space to align to the teacher’s.
In the second stage, we add the classifier on top of the linear
embedding layer and optimize all parameters in the student
with the supervision of both the groundtruth labels and the
teacher. Table 13 summarizes the results. With this two-stage
training, the student can be improved by a large margin,
compared with 89.98% mAP when training the student by
one stage. We find that the feature mimicking loss chosen in
the first stage is important, and the LSHL2 (£,,5. + Lis1,) loss
is consistently better than the ¢, loss.

We conduct experiments on VOC2007 and MS-COCO
and adopt two settings, i.e., using ResNetl01 to teach
ResNet50 and MobileNetV2, respectively. The student is
finetuned with the two-stage strategy, and the LSHL2 loss is
used in the first stage based on the above findings. Table 14
presents the results on VOC2007. LSHL2 — L2 denotes
using the LSHL2 loss in the first stage and the ¢, loss in the
second stage. The hyperparameters are set as S =0.5,
stdpash, = stdy, and N = 4D, in all experiments. LSHL2 — L2
achieves the best performance. ResNet50 is improved by
0.41 percent and MobileNetV2 is improved by 0.61 percent.
Experimental results of MS-COCO are showed in Table 15.
And we use g = 3, stdpasn = stdy, and N = 4D, in all experi-
ments. LSHL2 — LSHL?2 achieves the best performance.

A common trick in the multi-label classification task is
replacing the global average pooling (GAP) with the global
maximum pooling (GMP). So we evaluate the backbone net-
work with GMP on the MS-COCO. Table 16 presents the

TABLE 13
Test mAP (%) of the Student Network on Pascal VOCO07
1st stage L2 LSH LSHL2
2nd stage
L2 90.40 (49% 1) 90.21(42% 1) 90.59 (57% 1)
LSH 90.29 (45% 1) 90.11(38% 1) 90.30 (45% 1)
LSHL?2 90.57 (56% 1) 90.37(48% 1) 90.59 (57% 1)

Bold denotes the best results.
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TABLE 14 TABLE 16
Test mAP (%) of the Student Network on Pascal VOC2007 Test mAP (%) on MS-COCO
Teacher ResNet101 ResNet101 Model MobileNetV2 ResNet50 ResNet101
Student ResNet50 MobileNetV2 Baseline 73.90 77.20 79.57
Teacher 93.27 93.27 MCAR [36] 75.0 82.1 83.8
Student 92.76 89.53 Ours 76.03 79.55 81.24
LSHL2 — KD 92.69 (14% |) 89.64 (3% 1) The backbone networks use the i i
global maximum pooling (GMP) to aggregate
LSHL2 — L2 93.17 (80% 1) 90.14 (16% 1) features. Bold denotes the best results.
LSHL2 — LSH 92.40 (71% |) 89.91 (10% 1)
LSHL2 — LSHL2 92.85 (18% T) 89.90(10% 1) detection framework, two linear layers are applied on the
Bold denotes the best results. Penultimate la'ye.r to generate the Clas.sification a'nd bound-
ing box predictions, respectively. Given one image, the
backbone and FPN produce the feature pyramid, and the
TABLE 15 region proposal network (RPN) generates proposals to indi-
Test mAP (%) of the Student Network on MS-COCO cate the localities that objects may appear. Hence, many fea-
Teacher ResNet101 ResNet101 tures are extraFted .acc.ordlng to,the proposf'ﬂs. To make sure
. the student will mimic teacher’s features in the same loca-
Student ResNet50 MobileNetV2 .
tions, the teacher uses the proposals produced by the stu-
Teacher 77.67 77.67 dent. When training this framework, we only add the
Student 75.54 71.06 proposed loss to the original loss and apply the traditional
LSHL? — KD 75.14 (19% |) 71.47 (6% 1) training strategy. Our proposed loss is applied on the entire
LSHL2 — L2 77.04 (70% 1) 73.28 (34% 1) detection network, and it affects the optimization of the
LSHL2 — LSH 76.59 (49% 1) 73.73 (40% 1) backbone network, FPN, RPN and MLP.
LSHL2 — LSHL2 77.16 (76% 1) 73.73 (40% 1) The experimental results are presented in Table 17. First,

Bold denotes the best results.

results. As previously mentioned, we use ResNet101 (GMP)
to teach MobileNetV2 (GMP) and ResNet50 (GMP). In addi-
tion, we also evaluate the performance of self-distillation,
i.e., using ResNet101 (GMP) to teach ResNet101 (GMP). Our
method achieves better performances than baselines. We
compared our method with MCAR [36], which employs a
complex training pipeline designed for multi-label classifi-
cation and is the state-of-the-art method on multi-label clas-
sification. Our MobileNetV2 surprisingly surpassed that in
MCAR, which demonstrates the advantage of our method.

5.4 Detection
We evaluate our method on the object detection task. Fol-
lowing previous work [21], we conduct experiments on the
Pascal VOC dataset [34]. The training set consists of the
VOC2007 trainval set and the VOC2012 trainval set, and in
total 21K images. The testing set is the VOC2007 test set of
5K images. We use mAP@0.5 as the metric to compare the
performance of different methods. The detection frame-
works we adopted are both two-stage (Faster-RCNN [37])
and one-stage (RetinaNet [38]). And we use four networks
(ResNet50, ResNet101, VGG11, VGG16) pretrained on
ImageNet as the backbone. FPN [39] layers are adopted in
all experiments. All models are finetuned on VOC with 24
epochs. The hyperparameters in feature mimicking loss are
set as B =7, stdpusn, = std;, N =4D; and bias =0 in all
experiments. We have released our code.’

Fig. 6a shows our feature mimicking framework with
Faster-RCNN. As in classification, we want the student to
mimic features in the penultimate layer. In the object

3. https://git.nju.edu.cn/wanggh/detection.vision

we use ResNet101 to teach ResNet50. The performances of
these two baseline networks are 83.6 and 82.0 percent,
respectively. The teacher is higher than student by 1.6 per-
cent. All experimental results of ROI-mimic, PAD-ROI-
mimic, Fine-grained and PAD-Fine-grained are cited from
PAD [21]. They improve the student by at most 0.5 percent.
With our feature mimicking framework, i.e., mimicking the
features in the penultimate layer, simply using the ¢, loss as
the feature mimicking loss can improve the student by 1
percent. That shows the benefit of feature mimicking on
object detection. Combining the LSH loss and the /¢, loss,
the student is improved by 1.1 percent. When using VGG16
to teach VGGL11, the /5 loss can improve the student by 1.8
percent. With the LSH loss, the student is improved by 2.1
percent.

Fig. 6b shows our feature mimicking framework with
RetinaNet. Different from Faster-RCNN, RetinaNet produ-
ces features on all positions of the feature pyramid, and
each position will consider several anchors. With the
groundtruth bounding boxes, only a few of positions are
considered as positive and sent to the classification loss. We
force the student to mimic the features on these positive
positions and ignore the features on negative positions. Ret-
inaNet uses class subnet and box subnet to generate class
feature and box feature, respectively. We find that it is better
to only mimic the class feature and ignore the box feature.
So our proposed feature mimicking loss affects the optimi-
zation of the backbone network, FPN and the class subnet.
Table 18 shows the experimental results. Similar to Faster-
RCNN, our feature mimicking framework can improve the
student with a large margin. ResNet50 is improved by 0.5
percent whose performance is comparable to the teacher
performance. And VGG11 is also improved by 2 percent.

Overall, these object detection experimental results dem-
onstrate the advantages of our method. The LSHL2 loss is
consistently better than the ¢, loss in all experiments. Note
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KD loss
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/v class
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teacher KD loss
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Fig. 6. The pipeline of our method on the object detection task. (a) and (b) show our feature mimicking framework with Faster-RCNN and RetinaNet,

respectively. This figure is best viewed in color and zoomed in.

that the difference between the teacher and the student is
smaller when compared to the differences in recognition
tasks. However, the high relative improvement numbers
and the consistent improvements across different experi-
ments both verify our proposed method is effective. In this
paper, we only focus on mimicking the final features and
leave mimicking proposals as the future work. However,
only using feature mimicking has already improved the stu-
dent by a large margin, and the RetinaNet with ResNet50
backbone is even comparable to the teacher performance.
Compared with multi-label classification, we find it does
not need the two stage training strategy on object detection.

TABLE 17
Test mMAP @0.5 (%) of the Student Network on Pascal VOC0712
Teacher ResNet101 VGG16
Student ResNet50 VGGI11
Teacher 83.6 79.0
Student 82.0 75.1
ROI-mimic [19] 82.3(19% 1) 75.0(3% |)

PAD-ROI-mimic [21]
Fine-grained [20]

82.5(31% 1)
82.0 (0% 1)

75.8 (18% 1)
74.6 (13% |)

PAD-Fine-grained [21] 82.3(19% 1) 75.2(3% 1)
Ours (L2) 83.0 (63% 1) 76.9 (46% 1)
Ours (LSHL2) 83.1(69% 1) 77.2(54% 1)

The detector is Faster R-CNN with different backbones. Bold denotes the best
results.

TABLE 18
Test mMAP @0.5 (%) of the Student Network on Pascal VOC0712
Teacher ResNet101 VGG16
Student ResNet50 VGGI11
Teacher 83.0 76.6
Student 82.5 73.2

Fine-grained [20]
PAD-Fine-grained [21]
Ours (L2)

Ours (LSHL2)

81.5(200% |)
81.9(120% |)
82.6 (20% 1)

83.0 (100% 1)

72.0 (35% |)
73.2(0% |)
74.8 (47% 1)
75.2 (59% 1)

The detector is RetinaNet with different backbones. Bold denotes the best
results.

We guess it may be due to the MLP layer and the subnet in
Faster-RCNN and RetinaNet, respectively. These layers are
randomly initialized before finetuning on the detection
dataset. The feature space alignment will be learned implic-
itly in these layers.

6 CONCLUSION

In this paper, we proposed a flexible and effective knowl-
edge distillation method. We argued that mimicking feature
in the penultimate layer is more advantageous than distill-
ing the teacher’s soft logits [3]. And to make the student
learn the more effective information from the teacher, it
needs to give the student more freedom to its feature magni-
tude, but let it focus on mimicking the feature direction. We
proposed a loss term based on Locality-Sensitive Hashing
(LSH) [14] to fulfill this objective. Our algorithm was evalu-
ated on single-label classification, multi-label classification
and object detection. Experiments showed the effectiveness
of the proposed method.

Future work could explore how to improve our method,
such as reducing the randomness in the LSH module, and
aligning feature spaces efficiently and even if without training
data. Applying our method to other problems is also interest-
ing. It is promising to combine our method with self-super-
vised learning. And we will also consider how to deploy our
method to knowledge distillation under a data free setting.
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