Compressing Models with Few Samples: Mimicking then Replacing
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Abstract

Few-sample compression aims to compress a big redun-
dant model into a small compact one with only few sam-
ples. If we fine-tune models with these limited few samples
directly, models will be vulnerable to overfit and learn al-
most nothing. Hence, previous methods optimize the com-
pressed model layer-by-layer and try to make every layer
have the same outputs as the corresponding layer in the
teacher model, which is cumbersome. In this paper, we pro-
pose a new framework named Mimicking then Replacing
(MiR) for few-sample compression, which firstly urges the
pruned model to output the same features as the teacher’s in
the penultimate layer, and then replaces teacher’s layers be-
fore penultimate with a well-tuned compact one. Unlike pre-
vious layer-wise reconstruction methods, our MiR optimizes
the entire network holistically, which is not only simple and
effective, but also unsupervised and general. MiR outper-
forms previous methods with large margins. Codes is avail-
able at https://github.com/cjnjuwhy/MiR.

1. Introduction

Convolutional neural networks (CNNs) with millions of
parameters can only be utilized by high-performance de-
vices, even when we only care about the inference stage. In
order to put deep models into small devices and decrease the
latency and memory consumption, network compression [5]
is widely used in model deployment. To compress a model,
network pruning methods [14,16,20,22,23,30] try to prune
less useful weights or channels, while quantization meth-
ods [7] aim at quantizing the weights and activations with
fewer bits, and knowledge distillation methods [15, 24] try
to distill the dark knowledge from a potentially redundant
big model into a more compact small one.

These compression methods have been very successful
in reducing computations and accelerating inference speed.
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But, they all assume full access to the training data, and
unfortunately this assumption does not hold in many cases,
especially in non-academic scenarios. When handling sen-
sitive data (e.g., medical or commercial data), data security
issues are of special importance. As a response to this is-
sue, the few-sample or few-shot compression problem aims
to compress models with limited samples, which is a practi-
cal way to protect data privacy by using only non-sensitive
data.

To tackle this few-sample compression problem, recent
methods try to obtain a compact model in a layer-wise man-
ner. Li et al. proposed FSKD [18], which adds a 1 x 1 conv.
after each layer and optimizes the weights by minimizing
the reconstruction error for each layer. Bai et al. intro-
duced a cross distillation operation to better alleviate the er-
ror accumulation in each layer [1]. Furthermore, Shen et al.
tried to distill a compact model by grafting layers from the
teacher model to the student model progressively [27]. All
these methods tried to reconstruct the representation ability
layer-wisely, which is not only cumbersome but may also
cause error accumulation. Moreover, this layer-wise frame-
work needs a one-to-one relationship between the pruned
and the original model, therefore imposing heavy restric-
tions to the pruned model’s structure.

Instead, we advocate pruning and optimizing the entire
network holistically instead of following this cumbersome
layer-wise reconstruction framework, and recover the rep-
resentation abilities of the pruned model globally instead
of training the layers locally. In this regard, we propose a
new framework, Mimicking then Replacing (MiR), which
first urges the pruned model to output the same features
as the teacher’s (i.e., mimicking features), and following
LSHKD [29] we can mimic the features in the penultimate
layer. Then, while keeping the (classification, detection,
etc.) head intact, we replace all the other layers with the
trained compact model after mimicking. The features in the
penultimate layer in LSHKD [29] are obtained after a pool-
ing layer. We reveal that mimicking the features before the
pooling layer can boost the accuracy without extra compu-
tation.
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Figure 1. Illustration of different pruning schemes. We use a rectangle with notation N; x N2 X K to represent a conv. with N; output
channels, N3 input channels, and kernel size K. Blue rectangles represent features (activation maps). In this figure: a) A residual block in
ResNet-34 contains two conv., and we omit batch normalization and non-linear layers; b) In the ‘Normal’ pruning scheme, only channels
within residual blocks are pruned, in which the light blue color indicates channels that are pruned; c) the ‘Residual” pruning scheme, which
not only prunes channels within blocks, but also prunes coupled channels across different residual blocks; d) In the ‘CD’ pruning scheme,
only dashed and transparent residual blocks are pruned, and these blocks are pruned with the ‘Normal’ scheme. Best viewed in color.

MiR is simple to use (simple algorithm and zero ex-
tra hyperparameters), general (suitable for many scenarios),
unsupervised (not even use labels for the few-sample train-
ing set) and highly accurate (outperforming current state-
of-the-art methods by a large margin). With MiR, we can
train an accurate compressed model within dozens of min-
utes and only hundreds of samples. To sum up, our contri-
butions are:

e We propose a simple but effective framework, Mimick-
ing then Replacing (MiR), for few-sample compression.
MiR contains no extra hyperparameters to tune but out-
performs state-of-the-art methods with a large margin.

e MiR is general to use. It can be used for different prun-
ing schemes and is effective in different network archi-
tectures. Moreover, it has no restriction on the model’s
structure, and can avoid error accumulation because we
are the first to optimize the weights holistically in few-
shot compression.

e LSHKD [29] mimics the features in the penultimate
layer, but we find that mimicking features before pool-

ing helps a lot, at least in few-shot compression. It brings
0.5 to 2.0 percentage points without extra computation
compared with mimicking features after the final pooling
layer (i.e., the penultimate layer).

2. Related Work

Pruning. Network pruning is an effective and general way
to reduce model size and computations [4, 10, 13]. Exiting
pruning works can be divided into two categories: unstruc-
tured pruning and structured pruning. Unstructured pruning
aims to prune connections, leading to unstructured spar-
sity of models. Han et al. proposed a three-step method
to prune redundant connections [10]. Dynamic network
surgery designed by Guo er al. can integrate connection
splicing into the pruning process, which can significantly
reduce network complexity [9]. Tung and Mori proposed
CLIP-Q, which combined the advantages of weight pruning
and weight quantization in a single framework [28].
Structured pruning tries to prune less useful channels
and is friendly to all platforms. Li et al. first proposed to



accelerate CNNs by removing filters that have smaller ¢;-
norm [17]. Luo et al. pruned channels based on the statis-
tics computed from the next layer [23]. And there are other
methods [6, 13, 16, 19, 20] that tried different ways to de-
fine the importance of channels. Instead of finding the im-
portance manually, [3,8,21] tried to automatically find bet-
ter pruned models. Luo and Wu [22] pruned the residual
connections to get wallet-shaped models, which have both
higher inference speed and higher accuracy.

Knowledge distillation (KD). KD distills knowledge from
a redundant well-trained model into a smaller model, and
most KD methods focus on finding better knowledge or a
better way to distill knowledge. Hinton et al. first adopted
KD and tried to distill from the softmax outputs [15]. Fit-
Net [24] used not only the outputs but also the intermedi-
ate representations as hints to guide the student. Recently,
Wang et al. argued that it is better to only use the teacher’s
features in the penultimate layer and added an LSH loss to
make the student focus more on the feature directions and
less on magnitudes. We follow LSHKD [29] to only use the
final features in distillation.

Compression with limited data. Previous few-shot com-
pression methods mostly compress a network layer by layer.
Li et al. proposed FSKD [18], which contains three steps to
train a pruned layer. The first step is to add a 1 x 1 conv.
layer after each layer, the second step calculates the weights
in the 1 X 1 conv. by solving a least-square problem, and
the last step merges the 1 x 1 conv. into the original conv.
layer. Bai et al. proposed a cross distillation operation in
CD [1], which includes correction and imitation, then opti-
mized the compressed model layer-by-layer, cross distilled
by the guidance of a pre-trained model. Shen et al. proposed
a grafting method to align each layer by layer-wisely graft-
ing the student’s layer into the teacher’s, and by minimizing
the estimation error of the output logits [27].

There are also methods on zero-shot compression. Chen
et al. proposed a data-free method DAFL, which treated
pre-trained teacher networks as the discriminators and
trained a generator for deviating training samples [2].
Haroush et al. generated synthetic samples for calibrating
and fine-tuning quantized models without any real data [11].

In this paper, we mainly compare our MiR with two
pruning-based methods FSKD [18] and CD [1].

3. The Propose MiR Method

In this section, we first look back at the layer-wise recon-
struction framework for few-sample compression. Then, we
point out the shortcomings of this framework, and propose
a new framework called Mimicking then Replacing (MiR)
to deal with this few-sample compression problem.

First of all, we define the notation which are used in
this paper. We aim to get a pruned model M p from the
original pre-trained model M, and with the few-sample

data Dyeyy C Dirain, Where Dypqip is the original training
dataset. In some cases, even labels for D;,4;, may not be
available, i.e., we prefer an unsupervised compression.

The original model M is well-trained using the full
dataset Dy,.qin. The weights of the [-th layer in Mp and
Mo are denoted as W} and W/, respectively. Similarly,
the features (activation maps) are denoted as F' Il;, and F(l),
respectively. Then, we have

Fp=Wp@Fp ', (1)

in which ® is the convolution operator. In this few-sample
compression problem, our goal is to maximize the accuracy
of the pruned model M p using only Dyey,.

3.1. The need to abolish the layer-wise scheme

Compressing with few samples is a resource constrained
problem, only few training images D, and a well trained
model M are available to help recover the accuracy of
M p. Previous works [1, 18] followed the training frame-
work of FitNet [24], which uses a layer-wise reconstruction
manner to resume the representation ability of each layer.
Specifically, the optimization of one specific layer is

arg min C(W}),WIO,FIZDA,FIOA). 2)
Wi

The loss £ usually measures the representative disparity of
weights W5 and W), and the most simple measure is

L=|Wp®Fr' —W5eF5 %, 3)

in which || X||F is the Frobenius norm of the matrix X

and [ X|[p = Vtr(XTX) = />, X7?,. With some
channels pruned, the output dimensionality of layer [ will
change and cause a dimension mismatch issue. To handle
this problem, FSKD [18] tried to ignore the pruned features
and only reconstructed the responses of the preserved chan-
nels. CD [1] pruned the convolution layers within residual
blocks only, which can keep the output dimensionality of
residual blocks unchanged, and then computed the loss be-
tween the features of the pruned and the original model after
residual blocks. Recent pruning methods [20,22] improved
the way to prune residual connections, which may influence
many coupled convolution layers across different residual
blocks. [20,22] showed that it is highly disadvantageous in
terms of both acceleration and accuracy to only prune inside
the residual blocks. Hence, existing few-sample compres-
sions methods lead to inferior pruned network structures
(cf. Fig. 1).

Apart from the dimensionality issue, this layer-wise re-
construction framework suffers from error accumulation,
which is a severe problem that gradually accumulates es-
timation errors along the forward path. The reconstruction



Table 1. Mean and standard deviation of top-1/top-5 accuracy (%) on ILSVRC-2012. We used ‘Prune-C Normal’ to prune ResNet-34 and
compared different methods with different training sizes. We used 50, 100, 500 random samples, and N-way-K-shot (N/K in the top

row) settings. All the results were reported with five trials.

Method 50 100 500

‘ 1000/1 100072 1000/3

BP 39.041.41/68.941.17 41.040.33/70.5+0.66 51.840.30/78.140.38|57.840.30/81.540.18 60.040.23/83.0+0.11 61.0+0.19/83.7+0.15
KD  44.541.20/72.340.87 46.440.34/74.0+0.58 54.7+0.26/79.740.19|57.940.21/81.6+0.12 59.04+0.14/82.4+40.15 59.340.07/82.6+0.08
FSKD  45.340.77/71.5+0.62 51.240.30/76.8+0.23 57.6+0.21/81.640.15|59.440.13/82.7+0.06 60.1+0.13/83.2+0.08 60.3+0.12/83.440.05
CD  56.240.37/80.8+0.31 59.14+0.22/82.8+0.11 63.7+0.18/86.0£0.05(64.4+0.03/86.3+0.07 64.94+0.13/86.6+0.08 65.2+0.09/86.7+0.07

MiRg fter 61.04£0.21/84.340.16 62.54+0.17/85.440.13 65.4+0.03/87.2+0.13[66.60.06/87.8-£0.06 67.2+0.10/88.1+0.04 67.5+0.07/88.3+0.06
MiRpe fore 64.1+0.10/86.310.11 65.1+0.19/87.0+0.11 67.0+0.00/88.1+0.07 |67.8+0.06/88.5+0.02 68.2+0.10/88.8+0.04 68.41+0.00/88.9+0.02

in a layer tries to reduce the dissimilarity of two outputs,
which will never become zero in practice, and the dissimi-
larity will accumulate and enlarge itself, due to not only the
two models’ different capacities but also the adverse im-
pact of limited training data. To reduce error accumulation,
CD [1] tried to prune conv. layers within residual blocks
and only in shallow layers, while deeper conv. layers were
kept unchanged (cf. Fig. 1).

It is also shown to be effective in model pruning to drop
an entire residual block (or several blocks), which obvi-
ously breaks the one-to-one correspondence between layers
of the pruned and the original model. These recent and ef-
fective pruning approaches render existing layer-wise few-
shot compression scheme unusable—How can we reduce
the estimation error when we do not know what to estimate?
When this scheme is applicable, it is still confined by only
pruning convolution layers within residual blocks.

Instead, we argue that we need a new few-sample prun-
ing paradigm that is both general (i.e., applicable to all sorts
of pruning schemes and network architectures) and highly
accurate.

3.2. Mimicking then Replacing

Our solution is conceptually very simple: Mimicking
then Replacing (MiR). As the name suggests, MiR first
urges the pruned model to output the same feature represen-
tations as those of the original model for the same image.
This part is different from normal representation learning,
because it does not need any head (such as a classification
or detection head). We only need to pickup one layer in
front of such a head, and then mimic features at that layer.
In other words, this step is unsupervised and we do not need
any labels.

In the second (‘replacing’) step, after we get a smaller
student which produces nearly the same activations as those
of the bigger teacher, we then replace the teacher’s back-
bone with the smaller student but keep the head unchanged
to obtain the final compressed model. This step is obviously
unsupervised, too. It is also easy to deduce that we make no
assumption on the network’s structure (i.e., it is widely ap-
plicable). That is, MiR is not only simple and unsupervised,
but also general.

So now the key question is: what to mimic? In knowl-
edge distillation, researchers tried to find good supervision
signals from the teacher model, and the most popular way is
to use the softmax outputs (soft logits). But Wang et al. ar-
gued that the softmax outputs contain less information, and
that the teacher’s features in the penultimate layer (after the
final pooling layer and before the classification or detection
head) is a better supervision [29]. They mimic these fea-
tures directly, and focused more on feature directions and
gave freedom to feature magnitudes. Therefore, they pro-
posed an LSH loss along with the mean squared loss (¢,
loss) and the cross-entropy loss (Lcg). The LSH loss is
used for relaxing the constraints to magnitude. Hence, the
total loss in LSHKD [29] is

Etatal - CCE + B(ﬁmse + Elsh) 3 (4)

where [ is a loss balancing hyperparameter. We follow the
feature mimicking idea of LSHKD [29], but allows more
freedom in choosing the layer for feature mimicking (i.e.,
mimicking features in one of the layers, but not necessarily
the penultimate layer).

Because in the replacing step, the classification head re-
mains intact, we want the student’s features to be exactly
the same as those of the teacher’s. Hence, we only use the
Lnse term, with a nice byproduct being the 5 hyperparam-
eter eliminated. No extra hyperparameters have been intro-
duced in our MiR.

3.3. Mimicking features before pooling

As will be shown, MiR, by mimicking features in the
penultimate layer, has at least 2% gain over layer-wise re-
construction methods. But, the penultimate layer’s features
are obtained after a pooling layer (mostly global average
or max pooling). The pooling operation can filter noise in
feature maps but may also filter detailed information away.
Considering this, we change the mimicking target from the
features after the final pooling to the features before it. The
details filtered away by the pooling layer help us obtain
much better results without extra computation, as our ex-
periments will show later. Our optimization target is then

min ||[F§ — F5|%, (5)



where L is the index of the layer whose features are being
mimicked (either before or after the final pooling layer).

4. Experiments

In this section, we verify our statements about the MiR
framework through experiments. We focus on the effective-
ness and generality. Hence, we experimented MiR on 1)
different pruning strategies, which contains different prun-
ing ratios and various pruning schemes; 2) different model
structures (ResNet [12] and MobileNetV2 [26]). We report
both the average top-1 and top-5 accuracy and the standard
deviation with five independent trials. As for the number
of samples we use, we randomly sample K instances in N
classes (N way K shot, denoted as N/K) and also ran-
domly sample 50/100/500 instances regardless of classes.
Concretely, we tried K = 1,2, 3, and used 50/100/500 in-
dependently sampled images.

We compared our method with 1) fine-tuning with the
sampled subset directly with the cross-entropy loss (denoted
as BP); 2) training the pruned model with both hard tar-
gets (labels) and soft targets (softmax outputs of the orig-
inal model), and denoted as KD [15]; 3) FSKD [18] and
4) CD [1]. The results of these compared methods were
also reported after five independent trials. We implemented
BP and KD by ourselves, implemented FSKD according to
their official code snippets, and run the official CD codes to
obtain results (cf. the appendix for more details).

For our method, we optimized with SGD, and the learn-
ing rate, weight decay, and momentum were 0.02, le-4, and
0.9, respectively. We decreased the learning rate by a fac-
tor of 10 per 40% iterations. MiR, f¢e, and MiRp fore TED-
resent mimicking features after and before the final pool-
ing layer, respectively. On ILSVRC-2012 [25], we fine-
tuned models for 2000 iterations, and the batch size is 64
(the same settings as CD). Moreover, we also fine-tuned the
baseline methods (BP and KD) for 2000 iterations.

We are not studying the optimal way to prune filters,
so we pruned models by the simple ¢;-norm [14, 30], and
kept the same keep ratio for every layer. Based on the same
pruned models, we compare our method with others.

4.1. Effectiveness

To show the effectiveness, we experimented with
ResNet-34 [12] on ILSVRC-2012 [25], using the ResNet-
34 model from the PyTorch official site, which has 3.7G
FLOPs, 21.8M parameters, and 73.3%/91.4% top-1/top-
3.7G FLOPs and 21.8M parameters.

In Table 1, we pruned all convolution layers within resid-
ual blocks (‘Prune-C Normal’ in Table 2). As described in
Table 2, models with 31.3% FLOPs and 30.3% parameters
pruned are used here. As shown in Table 1, our MiR out-
performs other layer-wise reconstruction methods (FSKD
and CD) and softmax outputs optimization methods (BP

Table 2. Details of three pruning settings of different pruning
schemes. The original ResNet-34 model for ILSVRC-2012 has
3.7G FLOPs and 21.8M parameters. | means the percentage of
reduction.

keep ratio FLOPs| Params |

CD 0.70 14.0% 7.3%
Prune-A  Normal 0.85 13.7% 15.0%
Residual 0.93 13.4% 8.8%
CD 0.50 23.7% 11.7%
Prune-B  Normal 0.76 23.8% 23.3%
Residual 0.85 23.8% 20.6%
CD 0.30 33.3% 16.1%
Prune-C  Normal 0.68 31.3% 30.3%
Residual 0.80 33.5% 23.5%

and KD) by large margins consistently, especially when
the number of data decreases. BP and KD methods are
highly overfitting, whose accuracy on the training set were
nearly 100%, but the accuracy on the validation set were
very low. The layer-wise reconstruction methods behaved
better than BP and KD, and CD behaved much better than
FSKD. When we used the features after pooling in MiR, we
already significantly outperformed other methods. Further-
more, when we used the features before pooling as proposed
in this paper, we obtained extra 1-3% gains. This seemingly
very simple change leads to sizeable improvements in accu-
racy consistently in all our experiments.

Although previous works mostly report only the top-5
accuracy, Table 1 reveals that the top-1 accuracy is a more
powerful evaluation metric than top-5.

4.2. Different pruning ratios and schemes

As aforementioned, a good framework should be gen-
eral. In this subsection, we apply our MiR framework on
pruned models with different FLOPs and different pruning
schemes to show the generality of the MiR framework.

Precisely, by ‘pruning schemes’ we refer to the way that
is used to trim the model. Three pruning schemes are used
in this paper, which are visualized in Fig. 1 and their
statistics are reported in Table 2. As shown in Fig. 1,
the ‘CD-style’ pruning scheme only prunes some shallow
layers within residual blocks [1]. This setting makes sure
the reduction of representation ability only occurs in shal-
low layers, and the accumulated error through shallow lay-
ers can be compensated by those unpruned deeper layers.
In contrast, the ‘Normal’-style pruning scheme is the way
most researchers use, which prunes all layers within resid-
ual blocks. Furthermore, recent methods [20, 22] proposed
to prune the residual connection (or coupled convolution),
which is believed to be a more reasonable way to obtain
compact models. With ‘Residual’-style pruning, coupled
blocks will be affected simultaneously (as shown in Fig. 1),



Table 3. Mean and standard deviation of top-1 accuracy (%) on ILSVRC-2012. We compare the results under the same FLOPs reduction,
but with different pruning schemes. 500 randomly sampled images were used for training the pruned ResNet-34 models.

Prune-A (14% FLOPs |)

Prune-B (24% FLOPs |)

Prune-C (33% FLOPs |)

Methods CD-style Normal CD-style Normal CD-style Normal
BP 65.0240.30 63.43+020 58.944036 57.67+0.27 47.544041 51.9040.34
KD 67.22+0.18 65.7510.13 61.011024 60.2310.16 49.3410.25 54.7610.19

FSKD 69.5910.00 68.7510.08 62.56+0.13 63.72+0.13 33.19+0.60 57.65+0.18
CD 71.1240.06 69.9410.07 68171007 67.1340.06 59.6510.12 63.7010.18
MiRafter 71.64io,og 70-6010.06 69.75;{:0,10 68.3010.06 6641:!:0.06 65~37:t0-03
MiRpefore  71.95+0.07  7110+0.06  70.53+10.10 69.1840.05 68141004 66.98+0.09

Table 4. Mean and standard deviation of top-1/top-5 accuracy (%) on ILSVRC-2012. We pruned ResNet-34 using ‘Prune-C Residual’ (cf.

Table 2).

Methods 50 100 500

1000/1 100072 1000/3

BP  24.240.92/52.7+1.36 27.640.41/56.7+0.62 42.940.28/70.540.27 51.240.32/76.5+0.16 54.6+0.26/79.0+0.10 56.0+0.17/80.1+0.10
KD  30.140.69/57.7+1.10 33.1+0.43/61.0+0.53 45.7+0.26/72.20.25 50.540.29/75.940.23 52.3+0.14/77.3+0.08 52.7+0.11/77.6£0.09
FSKD  31.140.90/56.5+1.10 36.640.44/63.1+40.46 42.840.49/69.14+0.58 44.940.20/70.5+0.29 45.440.23/70.940.33 45.640.14/71.040.12
MiRg fter 53.440.40/78.6+0.37 56.640.43/81.240.30 62.4+0.14/85.1+0.11 64.3+£0.07/86.2£0.06 65.340.10/86.8+0.03 65.8+0.05/87.2+0.03
MiRpefore 59.9+0.30/83.2+0.31 62.110.22/84.810.18 65.4+0.07/87.0+0.03 66.6£0.05/87.7+0.04 67.210.05/88.2+0.05 67.5+0.04/88.310.05

and the output dimensionality of each block will change,
too.

We use Prune-A to represent different models with the
same FLOPs pruned, and so do Prune-B and Prune-C. As
reported in Table 2, Prune-A/B/C represent models with
around 14%, 24%, and 33% FLOPs reduction, in which
keep ratio means the ratio of output channels kept in lay-
ers after pruning. It is worth mentioning that ‘Prune-B CD’
is the same as the setting Res-50% used in CD [1]. As we
can see, these three pruning schemes have different model
size reduction under the same FLOPs, which is because
in ResNet, blocks in shallow layers have nearly the same
FLOPs but much fewer parameters than deeper layers. We
will soon see that these three pruning schemes have pros
and cons in different aspects.

To show the performance under different pruning
schemes and different pruning ratios, we report the results
of ‘CD’ and ‘Normal’ style with 500 samples used. As re-
ported in Table 3, we have the following findings according
to these results:

e All methods behave well when pruning a small num-
ber of FLOPs, and with more FLOPs pruned, the fine-
tuned accuracy drops quickly. Our MiR (both MIR, ¢4
and MIRy forc) outperforms others with a large margin.
Changing the mimicked features from after pooling to be-
fore pooling has a significant increase in accuracy, and
the gap expands when more FLOPs are pruned. It is
worth noting that MiR is in general more stable (i.e.,
smaller standard deviations) and is unsupervised. In con-
trast, BP, KD and CD need to use image labels in Dy.,,.

e In Prune-A and Prune-B, the fine-tuning results of the

‘CD-style’ scheme are higher compared with the ‘Nor-
mal’” scheme. There are two possible reasons. The first is
that **CD-style’ pruning preserves more parameters than
‘Normal’ under the same FLOPs. The second is that
‘CD-style’ pruning preserves more channels in deeper
layers, and it is easier to recover the pruned models with
these preserved deep layers.

e As Table 2 shows, ‘Prune-C CD-style’ trims 70% chan-
nels in shallow layers. The pruned network is of an hour-
glass shape [22] and most information is lost in these lay-
ers. Hence, the CD method becomes unstable in this case.
Since we optimize parameters in the backbone globally
and the information can flow through the residual con-
nections, our MiR method is still stable and accurate.

4.3. Pruning residual connections

The CD method needs to keep the dimensionality of the
compressed model’s feature maps the same as that of the
original model. Because the residual connection pruning
scheme changes the dimensionality, the CD method is not
usable in the residual pruning scheme. Therefore, we com-
pare MiR with BP, KD, and FSKD in Table 4 for the ‘Prune-
C Residual’ scheme. When comparing these results with
the ‘Prune-C 500 samples’ results in Table 2, we find the
‘Residual’ scheme is harder than the ‘CD-style’ and ‘Nor-
mal’ pruning schemes. Now the layer-wise reconstruction
method FSKD is highly ineffective in the residual pruning
scheme, which even has lower accuracy than BP and KD,
but FSKD behaved better than BP and KD in the ‘Normal’
pruning scheme. We also note that the ‘CD-style’ prun-
ing not only has fewer FLOPs reduction (14% vs. 33%



Table 5. Mean and standard deviation of top-1/top-5 accuracy (%)
on ILSVRC-2012. We pruned MobileNetV2 with the ‘Normal’

pruning scheme and pruned into different FLOPs.

Table 6. Average top-1 accuracy on ILSVRC-2012 under different
initial learning rates. Models are pruned using ‘Prune-B CD-style’
and 500 samples.

Methods 500 1000/3

MobileNetV2 71.9/90.3 71.9/90.3
BP 45.040.34/71.840.38 59.140.22/82.040.14
Prune-D KD 48.440.34/73.9+0.32 57.5+0.21/80.8+0.08
MiRg frerr  66.0+0.11/87.0+0.09 67.1+0.11/87.8+0.05
MiRpefore  67.6+0.05/87.9+0.04 68.3+0.05/88.4+0.05
BP 55.5+0.16/80.3+0.26 64.410.15/85.7+0.08
Prune-E KD 59.li0‘17/82.5i()‘15 64.5i0‘10/85.7i005
MiRgfter 68.940.03/88.8+£0.05 69.3+0.06/89.1+0.03
MiRpefore 69.7+0.04/89.21+0.03 69.9+0.02/89.4+0.03

of ‘Residual’), the network’s hourglass shape also makes
it slower than ‘Residual’ even when the FLOPs are the
same [22]. Hence, the ‘Residual’ pruning scheme is more
useful in practice than ‘CD-style’ and ‘Normal’. In the
‘Residual’ scheme, our MiR still has the highest accuracy.

4.4. Results on MobileNetV2

To further validate the generality of our MiR frame-
work, we implemented MiR on MobileNetV?2 [26], which is
widely used in edge devices and has a different structure as
the ResNet series. Instead of expanding MobileNetV2 then
pruning it (widely adopted in pruning methods), we directly
prune official MobileNetV2-1.0x with different FLOPs, i.e.
Prune-D and Prune-E, using the ‘Normal’ scheme. Prune-
D and Prune-E prune 25% and 15% channels in each layer,
respectively. So Prune-D prunes 21.6% FLOPs and 12.9%
parameters, Prune-E prunes 13.3% FLOPs and 7.7% param-
eters. We compare BP and KD methods with MiR using
500 samples or 1000-way-3-shot samples, with results in
Table 5. The original MobileNetV2 in ILSVRC-2012 from
official PyTorch website has 71.9% top-1 and 90.3% top-5.
MIR,, fter and MIRpe fore Work well in MobileNetV2.

5. Further Analyses

In this section, we further analyze the impacts of hyper-
parameters, number of training iterations, and training set
sizes. We also report the results with different loss func-
tion, and examine the limitations of MiR.

5.1. Hyperparameters

As aforementioned, MiR has no extra hyperparameters,
except those already in the optimizer. In our experiments,
we only changed the initial learning rate in SGD. To explore
the influence of the initial learning rate, we tried different
values in both MiR, 4., and MiRy foc. Experiments indi-
cate that 0.02 is a good initial learning rate. Too large or too
small values are harmful (cf. results in Table 6). We trained
models of ‘Prune-B CD-style’ (which is also Res-50% in

0.1 005 002 001 0.005 0.002 0.001

MiRgfter 68.51 70.02 70.53 70.50 70.23 69.54 68.89
MiRpefore 68.77 69.73 69.74 69.42 68.93 68.06 67.25

CD [1]) with 500 randomly sampled images, and we report
the mean top-1 accuracy of five independent trials.

5.2. Training time and training set size

We further explore the influence of training time (num-
ber of training iterations) and training set size (number of
training samples). First of all, we fine-tuned the pruned
models with 1k, 2k, 4k, 8k, 16k iterations with 500 sam-
ples, using the ‘Prune-B CD-style’ setting the same as in
Sec. 5.1. As shown in Fig. 2, the accuracy increases when
more iterations are used on both MiR f¢¢, and MiRy fore,
but the speed of increase gradually diminishes. One pos-
sible explanation for the accuracy boost is: Since we used
the standard data augmentation (random flip and random
crop), the randomness in data augmentation brings in sim-
ilar but different representations (i.e., features or activation
maps) of each image, which provides more information for
the pruned model to mimic.

Next, we also analyze the impact of the number of train-
ing data. We used 500, 1k, 2k, 4k, 8k, 16k, 32k ran-
domly sampled images for training, and report the mean
accuracy with 2000 iterations fine-tuning. According to the
results shown in Fig. 3, there is no doubt that using more
training images lead to better accuracy, especially when
we start from a tiny training set. Moreover, we fine-tuned
16k iterations with 10k randomly sampled images. We
achieve 71.8% and 90.6% top-1 and top-5 accuracy, respec-
tively. Compared with the original ResNet-34 (top-1/top-5
is 73.3%/91.4%), we compressed a model by 24% FLOPs
reduction and only 0.8% top-5 accuracy drop, which took
less than one hour in a single 32G V100 GPU with less than
1% of the original training set.

5.3. Comparison with other loss functions

In our Mimicking then Replacing framework, it is easy
to extend it by changing or adding another loss function.
In this part, we try to mimic features with some other
loss functions, and compare their performance in our MiR
framework. Because we aim at mimicking the responses
rather than performing representation learning, we compare
the /5 loss (using the features after pooling) with 1) the ¢,
loss; 2) maximizing the cosine similarity (‘sim loss’ in Ta-
ble 7); 3) the LSH loss in [29].

As shown in Table 7, both MSE (¢5) and ¢; based loss
functions fit well in mimicking features for few-sample
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Figure 3. Average top-1 accuracy with different number of training
samples. Best viewed in color.

compression. Because the LSH loss relaxes the constraints
to feature magnitudes, it is not as effective in this few-
sample compression task.

5.4. Freeze backbone and train classifier

As the results in Sec. 4 shows, it is vulnerable to overfit-
ting if we fine-tune the whole network (both backbone and
head). In our Mimicking then Replacing framework, we
only train the layers before the classifier head (i.e., the back-
bone) and directly use the head from the original model. We
need to decide whether the replacing operation is a good
choice. Therefore, we compare our MiR results with 1)
mimicking the features first and then freeze the backbone
to learn the classifier; and, 2) freeze the backbone without
fine-tuning, and then tuning the classifier.

The results are in Table 8. When using a larger learn-
ing rate to tune the classifier while freezing the backbone,
the accuracy will drop. When using a small enough learn-
ing rate, the weights in the classifier are almost not up-
dated. These results show that keeping the classifier head
unchanged is better than tuning the classifier.

Table 7. Results of different loss functions on ILSVRC-2012. We
trained models pruned by ‘Prune-B CD-style’ and 500 samples.
Mean and std. of Top-1 and Top-5 acc. are reported.

MSE

£1-norm

sim loss

LSH

top-1/top-5

v

NSNS

v

69.75/89.29
69.88/89.33
69.07/88.83
v/ 66.89/87.59
69.89/89.40
69.82/89.32
v 69.26/89.07

Table 8. The average top-1/top-5 accuracy when tuning classifier
under freezing trained or untrained backbone. Without tuning clas-
sifier, we have 69.75/89.29 when training backbone using MiR.

LR freeze freeze
trained backbone  untrained backbone
0.1 66.44/87.96 45.43/73.24
0.05 69.96,/88.97 50.52/76.45
0.01 69.52/89.22 52.37/71.53
0.005 69.59/89.21 52.08/77.29
0.001 69.60,/89.24 51.33/76.46

5.5. Limitations

In our Mimicking then Replacing framework, we aim at
obtaining a compact backbone that behaves almost the same
as the original one, which means we can only get a model
with the same or weaker representation ability than the orig-
inal model. The accuracy of the pruned model is bounded
from above by the accuracy of the original model.

And there are two potential directions to extend our MiR
framework. The first one is to augment the input data, which
may provide more information for feature mimicking. The
other one is to add loss functions, which also means adding
more supervision signals.

6. Conclusion

In this paper, we proposed a new framework, Mimick-
ing then Replacing, for few-sample compression, which
is not only simple and unsupervised, but also general and
highly accurate. Unlike previous layer-wise reconstruc-
tion methods, we directly urged the student to mimic the
teacher’s features around the penultimate layer, which made
no assumption on the network’s structure and made MiR
general to use. We followed the feature mimicking idea
of LSHKD [29], but we further mimicked features before
the final pooling layer, leading to significant improvements
without introducing extra computations.
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A. Implementation Details

In this section, we describe the implementation details of
the compared methods.

As mentioned in Sec. 4, we implemented FSKD for the
pruned ResNet models according to its official codes', and
we re-ran the official CD codes? to get its results. We only
replaced the pruned models while keeping the hyperparam-
eters unchanged. As for BP, we also used SGD as the op-
timizer, and the initial learning rate, weight decay, and mo-
mentum were le-3, le-4, and 0.9, respectively. For KD, we
also used SGD and used the same learning rate, weight de-
cay, and momentum as those in BP, in which we set the tem-
perature 7 = 2.0 and the loss balancing factor was a = 0.7.

B. Extra Results

In this part, we show results with fewer FLOPs pruned,
results with connections pruned, and results on the CIFAR-
10 dataset.

Pruning less FLOPs. As we reported in the main paper,
we used ‘Prune-C Normal’ and ‘Prune-C Residual’ to prune
the ResNet-34 model (¢f. Tables 1 and 4, respectively).
Here, we illustrated the ResNet-34 results of ‘Prune-B Nor-
mal’ (¢f. Table 9) and ‘Prune-B Residual’ (¢f. Table 10)
on ILSVRC-2012. As shown in Table 9 and Table 10,
MiR can outperform other methods regardless of pruning
a large amount or a small amount of FLOPs, and the gap
between MiR, 4, and MiRy t,... decreased when pruning
less FLOPs.

Unstructured pruning results. We implemented our MiR
to fine-tune the models which were pruned by an unstruc-
tured manner (i.e., connection pruning). We used the /-
norm weight pruning method to prune the less important
weights and compared our MiR with the CD method un-
der 90% weights pruned. Following the same settings in
CD, we only pruned the weights in conv. layers, which
means the weights in batch normalization layers and fully-
connected layers were kept (but we can still update the
weights in these layers). And 90% weights here means
pruning 90% weights every conv. layer.

The representation ability was damaged because so
much information was lost when pruning 90% weights with
smaller /1-norm. So we tried a progressive way to prune
and fine-tune weights. We pruned 20% weights and then
fine-tuned with 400 iterations until we got a 90% pruned
sparse model. At last, we fine-tuned the 90% pruned model
with 4000 iterations. As for the results of the CD method,
we re-ran the official codes and reported the mean and std.
of top-1 accuracy.

CIFAR-10 results. We also conducted ResNet-56 on
the CIFAR-10 dataset following the same pruning setting

Uhttps://github.com/LTH14/FSKD
Zhttps://github.com/haolibai/Cross-Distillation

in CD [1]. ResNet-56 is a customized model for small
datasets like CIFAR-10, and our pre-trained ResNet-56
model has 93.39%/99.87% of top-1/top-5 accuracy. We
directly compared our MiRy.f,.. with FSKD [18], Fit-
Net [24], ThiNet [23], CP [14] and CD [1]. As for our MiR,
no extra augmentation was used except for random horizon-
tal flip, and training settings were the same as mentioned in
Sec. 4.

In Table 12, we used 1/2/3/5/10/50 samples per class
to fine-tune the pruned models and reported the mean and
std. of top-1 accuracy under five independent trials. Results
marked with * were copied from CD. As shown in Table 12,
our MiR worked well in all cases.



Table 9. Mean and standard deviation of top-1/top-5 accuracy (%) on ILSVRC-2012. We used ‘Prune-B Normal’ to prune ResNet-34 and
compared different methods with different training sizes. We used 50, 100, 500 random samples, and N-way-K-shot (N/K in the top
row) settings. All the results were reported with five trials. Bold denotes the best results.

Methods 50 100 500 ‘ 1000/1 100072 1000/3

BP  48.341.55/76.440.94 49.340.44/77.440.41 57.940.19/82.540.09(62.040.27/84.5+0.20 63.7+0.23/85.5+0.13 64.640.14/86.0+0.10
KD  52.741.43/78.840.99 54.0+0.53/80.1+0.47 60.3+£0.10/83.80.09(62.5+0.08/84.940.08 63.4+0.19/85.4+0.08 63.7+0.10/85.6£0.07
FSKD  55.840.38/80.2+0.26 59.6+0.35/83.1+0.17 63.7+£0.13/85.8+0.04|64.8+0.07/86.4+0.08 65.3+0.06/86.7+0.07 65.5+0.11/86.8+0.05
CD  62.740.28/85.1+0.19 62.8+0.25/85.2+0.15 67.1£0.06/88.0£0.05(67.5+0.10/88.2+0.04 67.8+0.10/88.4+0.06 68.1+0.10/88.5+0.05

MiRgfter 65.7+0.00/87.3+0.07 66.6+0.07/87.8+0.11 68.3+0.07/88.7+0.08(68.9+0.03/89.1+0.04 69.3+0.09/89.2+0.06 69.5+0.05/89.4+0.05
MiRpe fore 67.5+0.13/88.340.06 68.140.13/88.7+0.07 69.240.05/89.3+0.08 | 69.7+0.06/89.5+0.03 69.9+0.04/89.7+0.07 70.0+0.07/89.8+0.03

Table 10. Mean and standard deviation of top-1/top-5 accuracy (%) on ILSVRC-2012. We pruned ResNet-34 using ‘Prune-B Residual’
(cf. Table 2). Bold denotes the best results.

Methods 50 100 500 ‘ 1000/1 1000/2 1000/3

BP 36.940.94/66.34+1.04 39.7+0.36/69.0+0.25 51.340.21/77.540.18|57.240.22/81.040.13 59.640.19/82.840.14 60.8+0.15/83.6+0.06
KD  42.440.48/70.140.68 44.940.40/72.240.35 54.040.18/79.0+0.16|57.2+0.15/81.040.11 58.640.10/82.0+0.09 58.9+0.10/82.2+0.04
FSKD  46.0+0.49/72.2+40.46 50.640.19/76.340.14 55.940.25/80.24+0.15(57.240.09/81.2+0.14 57.840.11/81.6+0.13 58.040.05/81.7+0.08

MiRg frer 61.140.20/84.240.24 62.9+40.18/85.5+0.16 66.2+0.12/87.540.07(67.3+0.06/88.2+0.07 68.0+0.07/88.6+0.05 68.3+0.03/88.7+0.06
MiRpe fore 64.9+0.25/86.610.21 66.240.10/87.5+0.12 68.210.12/88.7+0.05 | 68.8+0.05/89.1+0.06 69-3+0.06/89-3+0.03 69.5+0.06/89.5+0.03

Table 11. The top-1 accuracy of non-structured pruning. We pruned every layer except the first conv., and the sparsity is 0.9. Bold denotes
the best results.

Methods 50 100 500 ‘ 1000/1 1000/2 1000/3

CD 48.740.48 93.9+0.07 99.140.19 | 60.3+0.11 61.340.03 61.740.08
MiRpefore 5274053 55.5+056 6091029 | 63.24011 6431013 6471002

0.9

Table 12. Mean and standard deviation of top-1 accuracy (%) on CIFAR-10. We pruned ResNet-56 with ‘Res-50%’ used in CD [1] and
used 1/2/3/5/10/50 samples per class for tuning. Results were reported with five trials. Methods marked with * were copied from CD. Bold
denotes the best results.

Methods 1 2 3 5 10 50

FSKD* 84.2641142 85794131 85991199 87.531106 88.151071 88.701055
FitNet* 86.8541.91 87.954913 88944185 89434160 91.034114 91.894¢57
ThiNet*  88.401196 88.7611.18 88.9511.19 89.541084 90.361076 90.8910.49
CP* 88.534+1.37 88.694109 88.7910.94 89.394080 89.914069 90.4540.43
CD*  89.004150 89451145 89564130 90.1441 10 90.821070 91245033

MiRpefore 89.274+021 90434012 90.7040.15 91144023 91571014 92164011




